2.5 One-to-One Transformations

and Onto Transformations

The Kernel and Range of a Linear Transformation

Definition: If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, we define the *kernel* of *T* as the set:

$$
ker(T) = \left\{\vec{v} \in \mathbb{R}^n \middle| \boxed{T(\vec{v}) = \vec{0}_m} \right\} \subset \mathbb{R}^n.
$$

Similarly, we define the *range* of *T* as the set:

$$
\boxed{\text{range}(T) = \left\{ \vec{w} \in \mathbb{R}^m \middle| \vec{w} = T(\vec{v}) \text{ for some } \vec{v} \in \mathbb{R}^n \right\} \subset \mathbb{R}^m.}
$$

We emphasize that *ker*(*T*) is from \mathbb{R}^n , and *range*(*T*) is from \mathbb{R}^m .

Fundamental subspaces of a Linear Transformation! Notice that ker(T) corresponds to NS(A) and Range(T) corresponds to CS(A). Recall: Fundamental subspaces of a matrix A. There's 4 of them, but two of them are NS(A) and CS(A).

Theorem: If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a *linear transformation*, then:

$$
ker(T) = nullspace([T]) \trianglelefteq \mathbb{R}^{n}
$$
, and

 $range(T) = colspace(\lceil T \rceil) \leq \mathbb{R}^m$.

We call the dimension of $ker(T)$ the *nullity* of *T*, written *nullity*(*T*). Similarly, we call the dimension of *range*(*T*) the *rank* of *T*, written *rank* (T) . Thus:

 $nullity(T) = dim(nulspace(\lceil T \rceil)) = nullity(\lceil T \rceil), \text{ and}$ $rank(T) = dim(colspace([T])) = rank([T]).$

The Kernel of *T* The Range of *T*

So these are subspaces! These are important so make sure to study these carefully!

The Dimension Theorem for Linear Transformations

Theorem: Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Then:

 $rank(T) + nullity(T) = n$

$$
\frac{Pf}{\pi} \quad \text{By the dimension} \quad \text{theorem} \quad \text{for matrix:}
$$
\n
$$
\text{rank}(\text{IT}) + \text{nullity}(\text{IT}) = n
$$

Remark: It's hard to overstate the important of the dimension theorem for matrices we proved in Ch 1! It's one of the main tools of this entire chapter.

One-to-One Transformations

Definition: We say that a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is *<u>one-to-one</u>* or *injective* if the image of two different vectors from the domain are different vectors of the codomain:

If
$$
\vec{v}_1 \neq \vec{v}_2
$$
 then $T(\vec{v}_1) \neq T(\vec{v}_2)$.

We also say that *T* is an *injection* or an *embedding*.

Theorem: A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is *one-to-one* if *and only if* the only way two vectors from the domain have the same image in the codomain is for them to be the same vector to begin with:

$$
\text{map }\text{help}\left[\text{If } T(\vec{v}_1) = T(\vec{v}_2) \text{ then } \vec{v}_1 = \vec{v}_2.\right]
$$

In other words, the *only solution* to $T(\vec{v}_1) = T(\vec{v}_2)$ is $\vec{v}_1 = \vec{v}_2$.

$$
9\sqrt{1037}
$$
 conste of def of $|-1e^{2}yv^{e}$.

When
$$
\forall x
$$
 and $\forall y$ and $\forall y$.

\nTheorem — The Kernel Test for **Injectivity:**

\nA linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** if and only if:

\n
$$
\text{A} \quad \text{ker}(T) = \left\{ \vec{0}_n \right\}
$$

 (\Rightarrow) We are given that *T* is one-to-one. We must show that $ker(T) = \{\vec{0}_n\}.$ Suppose $\vec{v} \in \text{ker}(T)$. $\widehat{T(\vec{v})}=\widehat{T(\vec{v})}$ so b) ιT is $|-1$ \implies $\vec{v}=\overline{0}$. (←) We are given that $ker(T) = \{ \overrightarrow{0}_n \}.$ We must show that *T* is one-to-one. So suppose \vec{v}_1 , $\vec{v}_2 \in \mathbb{R}^n$, and $T(\vec{v}_1) = T(\vec{v}_2)$. $T(\vec{v}_1) = T(\vec{v}_2) \iff T(\vec{v}_1) - T(\vec{v}_2) = \vec{O}_{m}$ (b/c) is a c ^T $\iff \quad \top (\vec{v_1} - \vec{v_2}) = \vec{0}_m$. Addprop & This says: $\vec{v}_{1} \vec{v}_{2} \in \text{ker}(\tau)$. By assumption, $\vec{v}_1 - \vec{v}_2 = 0$, Thus, $\vec{v}_1 = 0$,

Example: Suppose $T_1, T_2 : \mathbb{R}^3 \to \mathbb{R}^4$ are given by the following matrices with the corresponding rrefs. Describe the kernel of each, decide if either is one-to-one, and verify the Dimension Theorem
for both. for both.

11.1

\n13.1

\n14.1

\n15.1

\n16.1

\n17.1 =
$$
\begin{bmatrix} 2x + (T_1) = 15(0.17) + 33 \\ 1 & -3 & 4 \\ 2 & -6 & 9 \\ -3 & 9 & -7 \end{bmatrix}
$$

\n17.1

\n18.1

\n19.1

\n19.1

\n11.1

\n10.1

\n11.1

\n11.1

\n13.1

\n14.1

\n15.1

\n16.1

\n17.1

\n18.1

\n19.1

\n11.1

\n11.1

\n13.1

\n14.1

\n15.1

\n16.1

\n17.1

\n18.1

\n19.1

\n11.1

\n11.1

\n13.1

\n14.1

\n15.1

\n16.1

\n17.1

\n18.1

\n19.1

\n11.1

\n11.1

\n13.1

\n14.1

\n15.1

\n16.1

\n17.1

\n18.1

\n19.1

\n11.1

\n11.1

\n13.1

\n14.1

\n15.1

\n16.1

\n17.1

\n18.1

\n19.1

\n11.1

\n11.1

\n13.1

\n14.1

\n15.1

\n16.1

\n17.1

\n18.1

\n19.1

\n11.1

\n11.1

\n13.1

\n14.1

\

 $\begin{bmatrix} x_1^{-3}x_1^{-5}0 & \rightarrow x_1^{-3}x_2 & \overrightarrow{x} = \begin{bmatrix} 3x_1 \\ x_1 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$ $NS(R_1)$ = $Spin(\{\frac{3}{6}\}\})$ Nullity $[T_1]$ = 1.

$$
[T_2] = \begin{bmatrix} 1 & -2 & 4 \\ 2 & -6 & 9 \\ 5 & -15 & 4 \\ -3 & 9 & -7 \end{bmatrix},
$$

with rref $R_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

$$
NS(R_{2})=NS(IT_{2}])=ker(T_{2})
$$

Describe the kernel and range of each, decide if either is one-to-one, and verify the Dimension Theorem for both.

$$
x_{1}=0
$$

\n $x_{2}=0$
\n $x_{3}=0$
\n y_{0} $Per(T_{2}) = \left[\begin{array}{c} 0\\ 0\\ 0 \end{array}\right]$
\nso T_{2} is $1-1$

Theorem: A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is *not* one-to-one if $n > m$.

Onto Linear Transformations

$$
\mathit{Range}(\mathit{T}) \mathit{SIR}^n
$$

Definition: We say that a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto or *surjective* if: $range(T) = \mathbb{R}^m$.

We also say that *T* is a *surjection* or a *covering* (because *T* hits all the vectors of \mathbb{R}^m).

Range
$$
(T) = IR
$$
^m: $\forall \vec{w} \in IR$ ^m $\exists \vec{v} \in IR$ ⁿ so that $\vec{w} = T(\vec{v})$.

Theorem: A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is *onto* if and *only if* $rank(T) = m$.

P
\n
$$
f_{m}(C s(CT)) = dim(C s(CT)) = dim(P_{amp}(T))
$$

\n• if T is onto them $Range(T) = I(R^{m} s o dim(I|R^{m}) = m$ so rank(T)=m.
\n• if rank(T) = m, then dim(P_{ap}(T)) = m but Range(T) = I(R^{m})
\n $Im L T$ by s is.
\n $Im L T$ by s is.
\n $Im L T$ by s is.
\n $Im L T$

Example: Suppose $T_1, T_2 : \mathbb{R}^3 \to \mathbb{R}^2$ are given by the following matrices with the corresponding rrefs. Describe the kernel and range of each, decide if either is one-to-one, and/or onto, and verify the Dimension Theorem for both.

¡*T*¹ ¢ "² "⁸ ⁶ 1 4 "3 , with rref *R*¹ ⁰ ⁰ ⁰ . 1 4 "3 ¡*T*² ¢ "² "⁸ ⁷ 1 4 0 , with rref *R*² ⁰ ⁰ ¹ . 1 4 "3

$$
dim(I^{e-1}) = 1
$$
 Free : 1
dim(I^{e-1}T₂) = 1

rank
$$
(T_{2})
$$
 + nullth₁ (T_{2}) = n
\n $2 + 1 = 3$
\n T_{2} is not $|-1$.

Theorem: A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is *not* onto if $n < m$.

Using the RREF of the Matrix of T

Theorem: Suppose that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, and R is the rref of $[T]$. Then: 1. *T* is **one-to-one** \int if and only if R does not have any free variables.

2. *T* is *onto if and only if R* does *not* have any row consisting only of zeroes. if and only if R has all leading 1s

 \sqrt{f} Raye (T) = R^M \leq iff

Theorem — Equivalent Properties for Full-Rank Linear Transformations: Suppose that *T* : h*ⁿ* v h*^m* is a linear transformation. Then: 1. if *m n*: *T* is full-rank *if only only if T* is *onto*. 2. if *m n*: *T* is full-rank *if and only if T* is *both one-to-one and onto*. 3. if *m n*: *T* is full-rank *if and only if T* is *one-to-one*. Proof: Exercise. Carefull: full rank is not the same as onto! By Dimension Theorem, it just means that the rank(T)=n. So if we have n LI vectors in R^n, then

 $\frac{1}{\sqrt{2}}$

full-rank means

also LI in R^m

 $T(v_1), \ldots, T(v_n)$ are

A Recap of The One-to-One and Onto Properties

A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** if and only if $ker(T) = \{ \vec{0}_n \}.$ This means that if $\vec{v} \in \mathbb{R}^n$ is any other vector but $\vec{0}_n$, then $T(\vec{v}) \neq \vec{0}_m$.

T is *one-to-one* if and only if:

$$
ker(T) = \left\{\stackrel{\rightarrow}{0}_n\right\}
$$

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if and only if $range(T) = \mathbb{R}^m$.

This means that for any vector $\vec{w} \in \mathbb{R}^m$, we can find at least one vector $\vec{v} \in \mathbb{R}^n$ such that $T(\vec{v}) = \vec{w}$. We remark that more than one such vector \vec{v} could exist for every \vec{w} . This also means that $rank(T) = m$.

T is *onto* if and only if:

 $range(T) = \mathbb{R}^m$

Anything Can Happen:

Suppose that $T: \mathbb{R}^n \to \mathbb{R}^m$.

If we *don't* know anything about *n* or *m*, then *T* can be:

- **O** one-to-one but not onto;
- onto but not one-to-one;
- *neither* one-to-one nor onto;
- *both* one-to-one and onto.

However, if we *knew* that:

 $n > m$, then *T* is automatically *not one-to-one*; however, *T* can be onto, or not onto.

T is onto, but not one-to-one *rank* $(T) = m$; *T* is full rank

 $\frac{\dot{\mathbf{0}}_m}{\Rightarrow}$.

.

 $\sum_{i=1}^{\infty}$

R*^m*

 $n < m$, then *T* is automatically *not onto*;

however, *T* can be one-to-one, or not one-to-one.

T is one-to-one, but not onto *rank* $(T) = n$; *T* is full rank

.

0*n*

R*n*

.

. .

.

.

.