
2.6 Invertible Operators and Matrices

In Algebra, we first require that a function:

f : D v R,

with domain D and range R, is one-to-one on D before we find its
inverse. If so:

f "1 : R v D, where

f "1�y  � x if and only if f �x  � y.

f and f "1 also possess the cancellation properties:

f "1� f �x   � f "1�y  � x for all x � D, and

f � f "1�y   � f �x  � y for all y � R.
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f1fx f1y xforallx D, ff1y fx yforally R.

I prefer to call these the "Inverse Properties"



Definition: We say that a linear transformation T : hn v hm is
invertible if and only if T is both one-to-one and onto.
We also say equivalently that T is bijective, T is a bijection or T is
an isomorphism.

Theorem: If T : hn v hm is invertible, then n � m.
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invertible if a We also say e

T is both one-to-one and onto.

Note: I prefer to reserve the term "bijective" for general functions that are 1-1 and onto. Of course, LTs are special functions so you can use the terms. Isomorphism is ok to use since this term applies to LTs from vector spaces (as we'll learn in Ch 3).

n m.

What else?!?



Theorem: A linear operator T : hn v hn is invertible if and only
if we can find another unique linear operator, T "1 : hn v hn, the
inverse operator for T, such that if v� � hn and T�v�  � w�, then we
define:

T "1�w�   � v�,
and thus:

�T "1 ( T �v�  � v� and �T ( T "1 �w�   � w�.
In other words:

T "1 ( T � T ( T "1 � Ihn ,
the identity operator on hn.
Furthermore, if T is invertible, then T "1 is also invertible, and
�T "1 "1 � T. Thus, we can say that T and T "1 are inverses of each
other.
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The Composition of T with T "1

T "1 ( T � Ihn � T ( T "1
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T1TTT1 In,

T11 T.



Invertible Matrices

Definition: An n � n matrix A is invertible if and only if the linear
operator T : hn v hn corresponding to A � ¡T¢ is an invertible
operator. In other words, the operator defined by:

T�v�  � Av�,

for all v� � hn, is an invertible operator on hn.
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Theorem/Definition: An n � n matrix A is invertible if and only if
we can find another n � n matrix B such that:

AB � In � BA.
We call B the inverse matrix of A, and denote it by A"1.
If A is invertible, then the inverse matrix A"1 is likewise invertible,
and:

�A"1 "1 � A.
In other words, B"1 � A. Thus, we can say that A and A"1 are
inverses of each other.
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A is invertibl h that:

1

Thus, set B=[T^(-1)]

w/ [T]=A



Theorem: If an n � n matrix A is invertible, then its inverse matrix
B is unique. This means that if B and C both satisfy the equations:

AB � In � BA and AC � In � CA,
then B � C.
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A is invertible if B and C bo

unique.

Nice proof -- good test Q ;-)



Theorem: Suppose that:

A �
a b
c d

.

Then A is invertible if and only if ad " bc p 0, in which case:

A"1 � 1
ad " bc

d "b
"c a

.
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if and only if



Example:

A �
"3 "5
5 7

.

Example:

A �
3 "7

12 "28
.
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The Matrix of T "1

Theorem: A linear operator T : hn v hn is invertible if and only
if A � ¡T¢ is an invertible n � n matrix. If this is the case, then:

¡T "1 ¢ � A"1 � ¡T¢"1.
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T1 A1 T1.

The Matrix of T1

So only NTS: [T^(-1)] = [T]^(-1)

We know:

We know:

We know:

So:



Example: Let T : h2 v h2 be given by:

T��x, y�  � �3x � 7y, 2x " 6y�.
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Bonus Example:

The Matrix of a Reflection Across a Plane in h3

Let $ be the plane in h3 with Cartesian equation:

3x " 5y � 2z � 0.

We found in the last Example of Section 2.2 that:

¡refl$ ¢ �
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