2.7 Finding the Inverse of a Matrix

Use GJR to And And

Goal: to be able to construct the matrix of the inverse of an invertible linear operator, and at the same time, to find the inverse of an invertible square matrix which is 3×3 or bigger, when it is possible to do so.

Multiplicative Properties of Elementary Matrices

E elementry matrix = do 1 ERO to In.

Theorem: If E is an elementary $n \times n$ matrix and A is any $n \times m$ matrix, then the **matrix product** EA can be computed by simply performing the **same elementary row operation** on A that was used to produce E from I_n .

An elementary matrix *encodes* the elementary row operation that produced it.

Old fashioned

Cs but importent conceptually:

ble easy to talk to a computer

w/ matrices (ie #s)

I not easy to talk"

Example: Suppose that

$$A = \begin{bmatrix} 5 & 7 & -2 & 3 \\ 4 & 1 & 8 & -5 \\ 2 & -3 & 9 & 6 \end{bmatrix}$$

and:

$$E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\mathcal{E}_{2} \circ \circ} P_{2}$$

$$E_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} R & \longrightarrow & R_3 \\ \end{array}$$

$$E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix} \qquad 5 * R_{2} + R_{3} \rightarrow R_{3}$$

Then:

$$E_{1}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 7 & -2 & 3 \\ 4 & 1 & 8 & -5 \\ 2 & -3 & 9 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 7 & -2 & 3 \\ 12 & 3 & 24 & -15 \end{bmatrix},$$

$$E_{2}A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 & 7 & -2 & 3 \\ 4 & 1 & 8 & -5 \\ 2 & -3 & 9 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -3 & 9 & 6 \\ 5 & 7 & -2 & 3 \end{bmatrix}, \text{ and}$$

$$= \begin{bmatrix} 2 & -3 & 9 & 6 \\ 5 & 7 & -2 & 3 \end{bmatrix}, \text{ and}$$

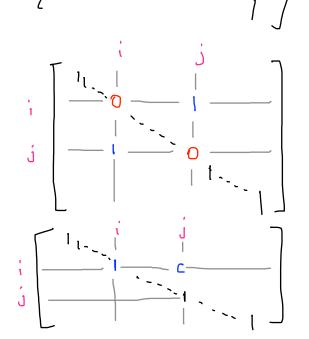
4

$$E_{3}A = \begin{bmatrix} \underline{1} & \underline{0} & \underline{0} \\ \underline{0} & \underline{1} & \underline{0} \\ 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 5 & 7 & -2 & 3 \\ 4 & 1 & 8 & -5 \\ 2 & -3 & 9 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 7 & -2 & 3 \\ 4 & 1 & 8 & -5 \\ 22 & 2 & 49 & -19 \end{bmatrix}$$

ERUS

$$\mathcal{F}_{i} \rightarrow \mathcal{F}_{i} \qquad \mathcal{F}_{i} = \begin{bmatrix} 1_{1.} & 0 \\ 0 & 1_{2.} \\ 0 & 1_{2.} \end{bmatrix}$$



Theorem: Elementary matrices are **invertible**, and the inverse of an elementary matrix is another elementary matrix of exactly the **same type**.

Examples:

For
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $E_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

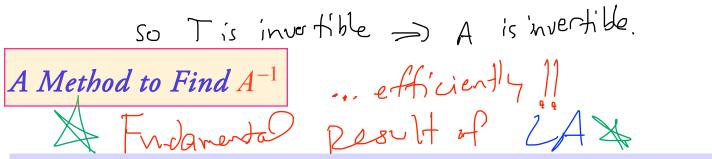
For
$$E_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, $E_2^{-1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

For
$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix}$$
, $E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1 \end{bmatrix}$.

A Preliminary Test for Invertibility
A Preliminary Test for Invertibility [Tropostant: "Quick" check of invertibility
Theorem: Let A be an $n \times n$ matrix. Then A is invertible if and
only if the ref of A is I_n .
A is invertible PR RREF(A) = In.
PF(-) A is invertible -> A -1 exists & I is 1-1 & onto
h Ch1: saw RREF(A)=In or get entire row of Os. Gree variables
If the's arow of Os in PREE(A) then there's at 12151 -
free variable => NS(A) has at least one van provention
din (NS(A)) > 1 50 ker (T) + { 3) 50 Tis
not HII so this contradiction & contradiction
SO RREFLATITA.
(E) Assume RREF(A)=In. DNS(A)= 503
=) ker (T) is 1-1. \(\sigma \)
Dext we show T is onto:
Since RREF(A)=In, CS(A) = Span(50,,, Vn?)
where vision LI -> CS(A) =/R?

Section 2.7 Finding the Inverse of a Matrix So Tis onto,

7



Theorem: Let A be an $n \times n$ matrix. If we construct the $n \times 2n$ augmented matrix:

$$[A \mid I_n],$$

then A is invertible **if and only if** the rref of this augmented matrix contains I_n in the first n columns. If this is the case, then A^{-1} will be found in the last n columns. In other words, the rref of $A \mid I_n$ is:

$$\left[I_n \mid A^{-1}\right]$$

Key Idea: there are only two possibilities for the rref of a square matrix.

Factoring Invertible Matrices

Theorem: An $n \times n$ matrix \underline{A} is invertible **if and only if** it can be expressed as a product of elementary matrices. If this is the case, then more precisely, we can factor \underline{A} as:

 $A = E_1^{-1} E_2^{-1} \cdots E_{k-1}^{-1} E_k^{-1},$ (Not on; five !)

where $E_1, E_2, ..., E_k$ are the elementary matrices corresponding to a choice of elementary row operations we used in the Gauss-Jordan Algorithm to transform A into I_n .

Note: The factorization of A into elementary matrices is **not unique**, since a different choice of elementary row operations will result in a different factorization.

Solving Invertible Square Equations

Important victory lap :-) The point is we can solve "matrix equations" in notation that is very similar to regular algebra (in 1 variable).

Theorem: If A is an invertible $n \times n$ matrix, then the system:

$$\text{Mactrix } \mathcal{EQ}: \qquad \overrightarrow{A}\overrightarrow{x} = \overrightarrow{b}$$

has exactly one solution for any $n \times 1$ matrix \dot{b} , namely:

$$\vec{x} = A^{-1}\vec{b}.$$

More generally, if C is any $n \times m$ matrix, then the matrix equation:

$$AB = C$$

has exactly one solution for the $n \times m$ matrix B, namely:

$$B = A^{-1}C$$

Pf A is invertible so A - exists. Pf
$$A * X = C_{n \times m}$$
 $A : X = \overline{D}$
 A

Solve for
$$X_{n\times m}$$

$$A^{-1}*(A*X) = A^{-1}*C$$

$$A^{-1}*A * X = A^{-1}*C$$

$$X = A^{-1}*C$$

Good test Q ;-)

 \Box