2.7 Finding the Inverse of a Matrix
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Goal: \to be able to construct the matrix of the inverse of an

invertible linear operator, and at the same time, to find the inverse

of an invertible square matrix which is 3 x 3 or bigger, when it is
possible to do so.
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Multiplicative Properties of Elementary Matrices
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Theorem: If |E is an elementary n X n matrix|and 4 is any n X m
matrix, then the \matrix product EA |can be computed by simply

performi me elementary row operation on A that was used
to produce E from /,,.

An elementary matrix encodes the elementary row operation that

produced it.
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E n n

matrix product EA


Example: Suppose that
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Theorem: Elementary matrices are ¢nvertible, and the inverse of an

elementary matrix is another elementary matrix of exactly the same

ype.

& J O
Examples:
o _ - Lo o -

For E| = , E7l = O 'k ©

0 o © |

0 O

For E,=| 01 0 |, E;'= o ) o

1 0 0 o
For E5=| 0 L Es'=| , 1 °

0 5 0 -5 |

6 Section 2.7 Finding the Inverse of a Matrix



A Preliminary Test for lnvertzbzlzty K LV
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Theorem: Let A be an n x n matrix. Then|4 is invertible | if and
only if the|rref of 4 is /,.
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A is invertibl
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Theorem: Let A be an n x n matrix. If we construct the n x 2n

augmented matrix:

(41, ],

then A4 is invertible |if and only if | the rref of this augmented

matrix contains /,, in the first # columns. If this is the case, then
A~ will be found in the last # columns. In other words, the rref of

[A |]n:| is:

L1 |47 ]
(AIT) — = (Do) A7)

Key Idea: there are only two possibilities for the rref of a square

matrix.
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A Method to Find A1

if and only if


Factoring Invertible Matrices

Theorem: An n x n matrix 4 is invertible if and only if it can be
expressed as a product of elementary matrices. If this is the case,

Mot vy ve \(
(s pe )

where £y, E,,..., Ej are the elementary matrices corresponding

then more precisely, we can factor A4 as:

to a choice of elementary row operations we used in the

Gauss-Jordan Algorithm to transform 4 into /,,.
\

Note: The factorization of A into elementary matrices is not
unique, since a different choice of elementary row operations will
result in a different factorization.
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Factoring Invertible Matrices

if and only if


Important victory lap :-) The
point is we can solve "matrix

Solving Invertible Square Equations

equations" in notation that
1s very similar to regular
algebra (in 1 variable).

Theorem: If A is ann X n matrix, then the system:
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_)
has exactly one solution for any # x 1 matrix b, namely:

L)_C) — 41D,

More generally, if C is any #n x m matrix, then the matrix equation:

| a5 - |

has exactly one solution for the n x m matrix B, namely:

B=A47'C
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Solving Invertible Square Equations

Important victory lap :-) The point is we can solve "matrix equations" in notation that is very similar to regular algebra (in 1 variable).

Good test Q ;-)


