2.8 Consequences of Invertibility	
TFAE Memorie!	
Theorem — The Really Big Theorem on Invertibility:	
The following conditions are equivalent for a linear op $T: \mathbb{R}^n \to \mathbb{R}^n$, with standard matrix $[T] = A$:	erator
1. T is an invertible operator.	
2. A is an invertible matrix.	
3. The rref of A is I_n .	
4. A is the product of elementary matrices.	
5. T is one-to-one.	
6. $ker(T) = nullspace(A) = \left\{ \vec{0}_n \right\}.$	
7. $nullity(T) = nullity(A) = 0.$	
$\langle 8. T \text{ is onto.} \rangle$	
9. $range(T) = \mathbb{R}^n$.	
10. rank(T) = n.	
$\frac{\text{Dim} Th}{\text{Dim} Th} = \frac{12^{n}}{\text{rank}(T) + n \cdot 1 \cdot 1 \cdot 1} = n$ $\frac{\text{Jim}(\text{range}(T)) + d \cdot 1 \cdot 1}{\text{Jim}(\text{range}(T)) + d \cdot 1 \cdot 1} = n$	

 $\gamma \gamma \gamma e(T)$

11. $colspace(A) = \mathbb{R}^n$.

12. The columns of A are linearly independent.

13. The columns of A Span \mathbb{R}^n .

14. The columns of A form a basis for \mathbb{R}^n .

15. $rowspace(A) = \mathbb{R}^n$.

16. The rows of A are linearly independent.

17. The rows of A Span \mathbb{R}^n .

18. The rows of A form a basis for \mathbb{R}^n .

19. The homogeneous equation $A\vec{x} = \vec{0}_n$ has only the trivial solution.

20. For every $n \times 1$ matrix \vec{b} , the system $A\vec{x} = \vec{b}$ is consistent.

21. For every $n \times 1$ matrix \vec{b} , the system $A\vec{x} = \vec{b}$ has exactly one solution.

22. *There exists* an $n \times 1$ matrix \vec{b} , such that the system $A\vec{x} = \vec{b}$ has *exactly one solution*.

Read and Study this proof from the book! Some of the directions are big results and some of them are definitions. Some of them are easy directions. I showed a few of them in class: (7) <=> (10)

Given A, we must find \underline{B} so that:

If B only satisfies the second equation we call B a "left" inverse for A.

Luckily, there's no need for this nonsense:

Theorem: An $n \times n$ matrix A is invertible if and only if we can find an $n \times n$ matrix B such that $AB = I_n$ or $BA = I_n$. Thus, a "right" inverse is also a "left" inverse, and vice versa.

This is subtle and deep result. It has a nice proof too! See the extra notes.

Proof: think of BA as a matrix representing the composition of two operators.

The Inverse of a Composition and Matrix Product

Theorem: If $T_1, T_2 : \mathbb{R}^n \to \mathbb{R}^n$ are both invertible operators, then $T_2 \circ T_1$ is also invertible, and furthermore:

$$[T_2 \circ T_1]^{-1} = [T_1]^{-1} [T_2]^{-1}.$$

Analogously, if *A* and *B* are invertible *n* × *n* matrices, then *AB* is also invertible, and furthermore:

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Another key result in Linear Algebra!

The converse is also true!

By the "Equivalence of LT & Mat Thm" we immediately get:

Theorem: If $T_1, T_2 : \mathbb{R}^n \to \mathbb{R}^n$ are operators and the *composition* $T_2 \circ T_1$ is *invertible*, then *both* T_2 and T_1 are also invertible. Analogously if A and B are two $n \times n$ matrices and the *product* AB is *invertible*, then *both* A and B are invertible.