
3.1 Axioms for a Vector Space

Definition — The Axioms of an Abstract Vector Space:
A vector space �V,¥,©  is a non-empty set V,
together with two operations:

¥ �vector addition , and

© �scalar multiplication ,

such that: for all u�, v� and w� � V and all r, s � h,
�V,¥,©  satisfies the following ten properties:

1. The Closure Property of Vector Addition:

u�¥ v� � V

2. The Closure Property of Scalar Multiplication:

r © u� � V
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Vector Space:

Note: Memorize all of these! I prefer the version I wrote on the white-board but these are ok too.



3. The Commutative Property of Vector Addition:

u�¥ v� � v�¥ u�

4. The Associative Property of Vector Addition:

�u�¥ v�  ¥ w� � u�¥ �v�¥ w�  

5. The Existence of a Zero Vector:

There exists 0 V � V, such

that: 0 V ¥ v� � v� � v�¥ 0 V

6. The Existence of Additive Inverses:

There exists " v� � V such that:

v�¥ �"v�  � 0 V � �"v�  ¥ v�
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7. The Distributive Property of Ordinary Addition
over Scalar Multiplication:

�r � s  © v� � �r © v�  ¥ �s © v� 

8. The Distributive Property of Vector Addition
over Scalar Multiplication:

r © �u�¥ v�  � �r © u�  ¥ �r © v� 

9. The Associative Property of Scalar Multiplication:

r © �s © v�  � s © �r © v�  � �rs  © v�

10. The Unitary Property of Scalar Multiplication:

1 © v� � v�
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We need three objects, that is, three pieces of information to define
a vector space:

�1  a non-empty set V,
(what are the vectors)

�2  a rule for vector addition ¥ that tells us how to add two
vectors to get another vector, and

�3  a rule for scalar multiplication © that tells us how to multiply
a real number with a vector to get another vector.
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Polynomial Spaces

en � £p�x  � a0 � a1x � a2x2 �C � anxn |

a0,a1,a2, . . . ,an � h¤

Example: e2

p�x  � 3 " 5x � 7x2 and

q�x  � 4 " 3x2 � e2

p�x  ¥ q�x  � �3 " 5x � 7x2  � �4 " 3x2 

� 7 " 5x � 4x2, and

3 © p�x  � 3�3 " 5x � 7x2 

� 9 " 15x � 21x2

0 en � z�x  � 0 � 0x �C � 0xn

" p�x  � "a0 " a1x " a2x2 "C " anxn
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Polynomial Spaces



Functions Spaces

F�I  � f �x  | f �a  is defined for alla � I

�f � g  �x  � f �x  � g �x , and

�kf  �x  � k � f �x 

The zero vector is simply the function z�x  which outputs the
value 0 for all a � I.

The negative of a function is simply defined by the function which
outputs as its value of "f �a , with input x � a.
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Functions Spaces

f gx fx gx, kfx k fx



How Can We Visualize Vectors?
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Key point: polynomials are definitely not "straight". But they still satisfy the Vector Space Axioms! Thus, when we think of Vector Spaces are being "linear" we are only refering to the "flatness" or "straightness" in the context of Euclidean Spaces R^n!!! 

Polynomial Spaces and, more generally, the Function Spaces are not "flat" or "straight" when we view them as graphs. The "linear structure", then, refers to the META properties: you can add two functions and create a new function; you can multiply a function by a scalar and create a new function.



m � n Matrices

Mat�m,n  � A |A is anm � nmatrix

The Smallest Example

V � 0 V

Addition? Scalar Multiplication?
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m n Matrices

Go back and read section 2.4. The first theorem verifies all the vector space axioms for Matrices!

The Smallest Example



We’re Not in Kansas Anymore

h� � x� |x � h, andx � 0 ,

x�¥ y� � xy (ordinary multiplication)

r © x� � xr (ordinary exponentiation)

� er ln�x 
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We’re Not in Kansas Anymore



Identity element:
z�¥ y� � y�

z� � ???

0 h� � ???

Inverses:

x�¥ y� � 0 h�

y� � ???
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Last four Axioms:

�r � s  © x� � ???

r © �x�¥ y�  � ???

�rs  © x� � ???

1 © x� � ???
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Additional Properties of Vector Spaces

Theorem — The Uniqueness of the Zero Vector:
The zero vector 0�V of any vector space �V,¥,©  is unique. This
means that if z� � V is another vector that satisfies: z�¥ v� � v� for
all v� � V, then we must have: z� � 0�V.

Theorem — The Uniqueness of Additive Inverses:
The additive inverse "v� of any vector v� � V in a vector space
�V,¥,©  is unique. This means that if n� � V is another vector
that satisfies: v�¥ n� � 0�V, then we must have: n� � "v�.
As a further consequence: "v� � "1 © v�.
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The Uniqueness of the Zero Vector:

Classic: one of the first proofs everyone learns when dealing with abstract vector spaces. Seems a bit silly, but it's important to learn to prove things from axioms.

The Uniqueness of Additive Inverses:



Theorem — The Multiplicative Properties of Zeroes:
Let �V,¥,©  be a vector space, with zero vector 0�V. Then we have
the following properties:
1. The Multiplicative Property of the Scalar Zero:

0 © v� � 0�V for all v� � V.

2. The Multiplicative Property of the Zero Vector:

r © 0�V � 0�V for all r � h.

3. The Zero-Factors Theorem: For all v� � V and r � h:

r © v� � 0�V if and only if either r � 0 or v� � 0�V.
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Multiplicative Properties of Zeroes:



Definition — Axiom for Parallel Vectors:
Let �V,¥,©  be a vector space, and let u�, v� � V. We say that u�
and v� are parallel to each other if there exists either a � h or
b � h such that:

u� � a © v� or v� � b © u�.

Consequently, this means that 0�V is parallel to all vectors v� � V,
since 0�V � 0 © v�.
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parallel to each other

We're applying definitions to abstract objects based on our intuition of R^n (ok, really R^2 and R^3).



Things Don’t Always Work Out

Example: Suppose V � Mat�2, 3 , with vector addition defined as
matrix addition, as before.

However, we will define scalar multiplication by:

r © A � r ©
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

�
ra1,1 ra1,2 ra1,3

a2,1 a2,2 a2,3

Do the Distributive Properties still hold?
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Things Don’t Always Work Out



Example: Suppose we let V � h2, but with addition defined by:

�x1, y1 � ¥ �x2, y2 � � �2x1 � 2x2, y1 � y2 �.

Scalar multiplication: same as before.

Is there a zero vector?

Does a vector have a negative?
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