Note: Memorize all
of these! I prefer
the version I
wrote on the
white-board but
these are ok too.

3.1 Axioms for a\Vector Space

Definition — The Axioms of an p‘lbstmb Vector Space:
A vector space (V,P,©) is a—kon—\empty set V,J
together with two Mns:

M

) P (vector addition)} and

[@ (scalar multiplication)J

—_—

such that: for all , 7 and we V and all r, seR,
(V, 8, ®) satisties the following ten properties:

@ The Closure Property of Vector Addition:

— — v
udveV XVJ,\/C:\[_

@Tbe Closure Property of Scalar Multiplication:
rQueV vr £ IR
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Vector Space:

Note: Memorize all of these! I prefer the version I wrote on the white-board but these are ok too.


@Tbe Commutative Property of Vector Addition: 7—\

- - - -
uPbv=0vp u

@ The Associative Property of Vector Addition:

LB w=u0@®w)

@ The Existence of a Zero Vector:

LThere exists 6)1/ e IZ\such

— — — — —
that: 0y v =0v=0vP 0y

@Tbe Existence of Additive Inverses:

({/There exists — v € Vsuch that:
PO (D) =0v=(D) @7 j
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@. The Distributive Property of Ordinary Addition
over Scalar Multiplication:

(V_Jri)\@/Z: (r©2) ® (sO ) @Wge”l>

@ The Distributive Property of Vector Addition
over Scalar Multiplication:

rO@®2)=00u)®(rOv)
~_T

@ The Associative Property of Scalar Multiplication:
rOGOY)=s00F0v)=0s) OV

@ The Unitary Property of Scalar Multiplication:

1@Z=ﬂ




We need three abjects, that is, three pieces of information to define

a vector Space:

(1) a non-emptyset V,

(what are the vectors)

(2) a rule for vector_addition @ that tells us how to add two

vectors to get another vector, and

(3) a rule for scalar multiplication © that tells us how to multiply
- W
a real number with a vector to get another vector.
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Polynomial Spaces

(PY\: imll ﬁ;{)%ﬁ( Poh/nome\\g E

P" = {p(x) = ap + a1x+ arx” + -+ + a,x" |

an,a1,425...,4, € [R}

Example: P*

p(x) =3 —-5x+7x*> and
qg(x) = 4 —3x? € P?
q\x) = 5= ox"

p(x) ® g(x) = (3—5x+7x?) + (4 —3x?)

= 7 —5x + 4x?%, and

30 pkx) =33 -5+ 7x?)
PP

=9 — 15x +21x?
N \
N _p@) = —ao - a1x — an® — - — @

all U3h ot Ak %rwe&(
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Polynomial Spaces


GfC Lol Q) ‘Q
Functions Spaces [ = wdtrvad 1w R g~ all IR. Pl

d

HI) = {f(x) | /(@) isdefined forallaz € [}
§) ﬂ c ?‘(/72/ /E-) = Z’jl =1 ﬁuwt_,'lﬁ'l"‘ E
(f+g) (x) = f(x) + g(x),| and
(kf) (x) = k- f(x)

J® g - Lo 4900 lc GWC E ey

The zero vector is simply the function z(x) Wh1ch outputs the

value O foralla € I.
[ Frop) T Z(x) = VX@’R
The negative of a function is simply defined by the functiomwhic

outputs as its value of —f(a), with inputx = a.

L didsve vt of
(~f)oy = ~ex
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Functions Spaces

f gx fx gx, kfx k fx


How Can We Visualize Vectors?

< =
N
~9
~9
)

(O8]
~9
~9
)

=
s,
=
9
3
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Y (2,4)
7 }///,
(31)/? v=<53>

N NEEERE

21 u=<2,-3>

- — - .
Three Vectors, u, v and w in R?

Key point: polynomials are definitely not
"straight". But they still satisfy the Vector
Space Axioms! Thus, when we think of Vector
Spaces are being "linear" we are only refering
to the "flatness" or "straightness" in the
context of Euclidean Spaces R*n!!!

Polynomial Spaces and, more generally, the
Function Spaces are not "flat" or "straight"
when we view them as graphs. The "linear
structure", then, refers to the META properties:
you can add two functions and create a new
function; you can multiply a function by a
scalar and create a new function.


Key point: polynomials are definitely not "straight". But they still satisfy the Vector Space Axioms! Thus, when we think of Vector Spaces are being "linear" we are only refering to the "flatness" or "straightness" in the context of Euclidean Spaces R^n!!! 

Polynomial Spaces and, more generally, the Function Spaces are not "flat" or "straight" when we view them as graphs. The "linear structure", then, refers to the META properties: you can add two functions and create a new function; you can multiply a function by a scalar and create a new function.


Go back and

read section

m x n Matrices ”\/I [IRB :im“ My 1, W\,\A‘:Qﬁ 2.4. The first

theorem
verifies all
the vector

Mat(m,n) = {A|Ais an 7 X 7z matrix }Space SLLEE

for Matrices!

AR = (Ottd')mgp CIDU BW:,\ ( a_b'*rlob' }MM
P@/’\:Y‘GCC&{J’) :C‘“OL"J')MM

My

The Smallest Example

@]

Addition? Scalar Multiplication?
- -
(5\3 N £ ¢ e —| Ve \J_;
i
Bl.j VSA S . O\IE \FO
~ 9 -
OJJZ*Qj [)\[Cﬁz)d:)k/ = [)\/

—\

-9 — 2 ~
}{’ﬂ\ - = Q 2 > - J? — )
e Oy Dy 8 Oy, ©-0, O\J@\/ “ 0, .

———
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m n Matrices

Go back and read section 2.4. The first theorem verifies all the vector space axioms for Matrices!

The Smallest Example


We're Not in Kansas Anymore

Rt = {)_c)|x € R, andx > O},

XDy =xp (ordinary multiplication)
rox=x" (ordinary exponentiation)
—_
_ orin)
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We’re Not in Kansas Anymore


Identity element:

Z®y =Yy
Z =999

ﬁ
Or+ = 277

Inverses:
H
¥®?=OW
_)
y =177
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Last four Axioms:

(r+s)©x =727
ro(xey) =727
(rs) ©X = 227

1Ox=1727?
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Additional Properties of Vector Spaces

Theor¢m — |The Uniqueness of the Zero Vector:

_)
The zero vector Oy of any vector space (V,®,®) is unique. This
means that if Z € V is another vector that satisfies: Z® vV =V for
_)
all v € V, then we must have: Z = 0y.

Classic: one of the first proofs everyone learns when dealing
with abstract vector spaces. Seems a bit silly, but it's
Sé§> important to learn to prove things from axioms.

Theorem — |The Uniqueness of Additive Inverses:

The additive inverse —v of any vector v € V in a vector space
y p
(V,®,®) is unique. This means that if n € V is another vector

-

. - o = —
that satisfies: v @ n = 0y, then we must have: n = —v.
As a further consequence: —v = —1 ® .

L %ooaé exectise &1 v @l

{
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The Uniqueness of the Zero Vector:

Classic: one of the first proofs everyone learns when dealing with abstract vector spaces. Seems a bit silly, but it's important to learn to prove things from axioms.

The Uniqueness of Additive Inverses:


Theorem — The Multiplicative Properties of Zeroes:

Let (V,®,©®) be a vector space, with zero vector 6V. Then we have
the following properties:

@ The Multiplicative Property of the Scalar Zero:

Mfor all v e V.
—

(2) The Multiplicative Property of the Zero Vector:
7'@61/: (_))V for all I"i[R.

@ The Zero-Factors Theorem: For allv € Vand r € R:

/m if and only if|either r = 0 or v = BV.

% e
(). Wk DeV karkitmny,
B\ﬂ Qm{)er’h(’s G'F |4 ;w
Thow

2
pov = (oro) OV

Z?ﬂ OQ{? - @Q&D @00\? C\}S/AT?’) ]
.
ByIspL 00 Jer so Yy VAL J —(&Ovjf\/_
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Multiplicative Properties of Zeroes:


S5

0 OO\/ (OQV "(CDV”

Oov®0 @%) -

Definition — Axiom for Parallel Vectors:

Let (V,®,©®) be a vector space, and let u, ve V. We say that u

and 7 are parallel to each other|if there exists either 2 € R or
b € R such that:

Consequently, this means that 0y is parallel to z// vectors v € V,
since O yr=007.

, 2 | We're applying definitions to
eV .
no p‘ oﬁﬁ%i abstract objects based on our
! intuition of R"n (ok, really
R*2 and R"3).
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parallel to each other

We're applying definitions to abstract objects based on our intuition of R^n (ok, really R^2 and R^3).


Things Don’t Always Work Out

Example: Suppose V' = Mat(2,3), with vector addition defined as
\

matrix addition, as before.

However, we will define scalar multiplication by:

ail aiz ais
rOA=r@

az1 dz22 d23

v
F@A B @11,1 rain 1,3

az azn az3s

Do the Distributive Properties still hold? 5 ]VUJU |/_§,4 ?

(PTS’)@A - | tewda, (ra, o Ml&J
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i ] O, Sa\]-]_ 50\1’3
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CantSoy . Ma o ora 156

Lroa). O (seA) - [wu  ar | 3o BB\ :


Things Don’t Always Work Out


Example: Suppose we let V' = R?, but with addition defined by:

(X1, Y1) @ (X2, ¥2) = (2x1 + 2201 +Y2).
T

Scalar multiplication: same as before.
-)
[s there a zero vector? O\/ =<a, b >

DOCS a vector have d negative?
Cxg> O 2any = <vys Y Y2
G T e A

Z{pr.n\:x X=0 —=2g <

2y Tlls‘:j Yyso —5 b==®
k=) &:4/7_
¥z - h—-l1_

Ntﬂl 45000{ 1
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