3.2 Linearity Properties for Finite Sets of

Important Concepts in Linear Algebra: Vector Space

VeCtorS (check), Linear Combinations, Linear Dependence &
Independence, Subspaces. We studied all of these
properties for Euclidean Spaces R"n. Now we revist
these concepts for Abstract Vector Spaces.

Linear Combinations and Spans of Finite Sets of Vectors
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Definition: LetS = {7/)1,7/)2, ,an be a set of vectors from a
vector space (V,®,®), and

let 7¢, 75,..., 7, € R. Then, a|linear combination|of the vectors

S — — .
V1, U2, ..., U, wWith

coefficients r1, ra, ..., r, is an expression of the form:
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Similarly, the|Span of the set of vectors § = {01, 02, ..., v, is the
set of all possible linear combinations of these vectors:

S?dn(S) ZZS?dn({Ea,za,...;Zn})
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Linear Comb

Spans

Important Concepts in Linear Algebra: Vector Space (check), Linear Combinations, Linear Dependence & Independence, Subspaces. We studied all of these properties for Euclidean Spaces R^n. Now we revist these concepts for Abstract Vector Spaces.

linear combination

Span


Example: The vector space P" consists of all polynomials of degree

at most 7.
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Membership in A Span

A useful theorem:

Theorem — The Fundamental Theorem of Algebra:

Every non-constant polynomial p(x) (that is, of degree n > 1),
with complex (or possibly real) coefficients, has exactly n complex

roots, counting multiplicities.
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Consequence:

Theorem — | Equality of Polynomials:

¢ p(x) =co+cix+cox?+

Suppose that:

oo+ c,x" and

e q(x) — d0+d1x+d2x2+...+dnxn.

Then, as functions,| p(x) = q(x)\ (i.e. the graphs of the two

functions are the same) |if and only if \co = do, c1 = di, ...,

c, = d,.

13§te: We say that p(x) = q(x) as functions if the values of the

two functions agree for all real numbers a € R, that is:

p(a) = qg(a) forall a € R.

In other words, they have the same graph.
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Equality of Polynomials:

if and only if


Example: Consider the set S of polynomials from P>:

4 g
g Uﬁﬁ_6,2x3—3x2—7x+3,

10x3 = 19x2 +x + 15
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Let p(x) = 2x° — 6x? + 20x + 3.

Decide whether or not p(x) is a member of Span(S )\({ S K
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Entire row of 0Os : infinitely many solutions!
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So yes!


Entire row of 0s : infinitely many solutions! So yes!


Linear Independence of a Finite Set of Vectors

Definition: Let S = {7/)1,7/)2, ,7/)”} be a set of vectors from a
vector space (V,®,®). We say that § is linearly independent |if

and only if the only solution to the equation:

Ecl ©7) @ (209)® @ (¢, ©3,) = O EE

B

is the trivial solution ¢; = 0,¢, =0, ..., ¢, = 0. As before, we

will refer to this equation as a dependence test equation and
sometimes just say ‘independent” to mean linearly independent.
The opp%ite of being linearly independent is being linearly
dependent,’ which means there is a non-trivial solution to the
dependence test equation, that is, where at least one ¢; is non-zero.
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Linear Independence

linearly independent


Theorem: Let (V,®,®) be a vector space, and v € V. Then
S = {V} is linearly independent|if and only if|v + O;;.
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Theorem: Let (V,®,®) be a vector space, and Vi, v € V. Then
S = {V1, vy} is linearly Zindependent if and only if V| is not

Mrt—o V.
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Theorem: Let S = {V1,Va2,...,V,+ be a set of vectors from a

vector space (V,®,®). Then: S is linearly %@ﬂdent if and only

if lat least one vector (which, without loss of generality, we can set

p——___

to be V1) is a linear combination of vV, V3, ..., V,, that is:

Vi=(rmOWn)®T:0Wm) & & 0, 0V,),

for some scalars 5, r3, ..., 7, € R.
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if and only if

if and only if

if and only

if


A Sufficient Test for Independence of Sets of Polynomials

Theorem: Suppose S = {pi(x), p2(x), ..., pi(x)} is a set of
polynomials from P” with distinct degrees. Then § is linearly

independent. In particular, the set {1, x, x?, ..., x"} is linearly
independent.
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A Sufficient Test for Independence of Sets of Polynomials


Example: Consider the set S = {e™*, ¥, e>*}.
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Generalization: C\ tO +0 = 2(x) —70)
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Theorem: Suppose S = {ek1¥, ek2* . ek
Wher‘%kl < ky < -+ <k, are n distinct real numbers.
———

Then: §S'is linearly independent.
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