3.2 Linearity Properties for Finite Sets of
Vectors Important Concepts in Linear Algebra: Vector Space
(check), Linear Combinations, Linear Dependence s
independence, Subspaces. We studied all of these
properties for Bucklean Spaces Rⁿ. Now we revist
these concepts for Abstract Vector Spaces.
Linear Combinations and Spans of Finite Sets of Vectors

$$S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$$
 be a set of vectors from a
vector space (V, \oplus, \odot) , and
let $r_1, r_2, ..., r_n \in \mathbb{R}$. Then, a *linear combination* of the vectors
 $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ with
coefficients $r_1, r_2, ..., r_n$ is an expression of the form:
 $\Box (r_1 \odot \vec{v}_1) \oplus (r_2 \odot \vec{v}_2) \oplus \cdots \oplus (r_n \odot \vec{v}_n). \in \mathcal{N}$
Similarly, the Span of the set of vectors $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ is the
set of all possible linear combinations of these vectors:
 $Span(S) = Span(\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\})$
 $= \{(r_1 \odot \vec{v}_1) \oplus (r_2 \odot \vec{v}_2) \oplus \cdots \oplus (r_n \odot \vec{v}_n) \mid r_1, r_2, ..., r_n \in \mathbb{R}.\}$
 $Span(S) = Span(\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\})$

Example: The vector space \mathbb{P}^n consists of all polynomials of degree at most n.

$$P^{n} = Span(\{1, X, X^{2}, ..., X^{n}\})$$

$$J_{my}? \quad pcx \in \mathbb{P}^{n} \text{ if}$$

$$p(x) = c_{0}1 + c_{1} \times + c_{2} \times^{2} + \cdots + c_{n} \times^{n}$$

$$Remark \quad dim \mathbb{P}^{n} = \frac{n + 1}{2}$$

L

Membership in A Span

A useful theorem:

Theorem — The Fundamental Theorem of Algebra:

Every non-constant polynomial p(x) (that is, of degree $n \ge 1$), with complex (or possibly real) coefficients, has exactly *n* complex roots, counting multiplicities.

Consequence:

Theorem — Equality of Polynomials: Suppose that:

$$p(x) = c_0 + c_1x + c_2x^2 + \dots + c_nx^n$$
 and
 $q(x) = d_0 + d_1x + d_2x^2 + \dots + d_nx^n$.
Then, as functions, $p(x) = q(x)$ (i.e. the graphs of the two
functions are the same) if and only if $c_0 = d_0$, $c_1 = d_1$, ...,
 $c_n = d_n$.

Note: We say that p(x) = q(x) as functions if the values of the two functions agree for all real numbers $a \in \mathbb{R}$, that is:

$$p(a) = q(a)$$
 for all $a \in \mathbb{R}$.

In other words, they have the same graph.

$$Example: Consider the set S of polynomials from \mathbb{P}^{3}:$$

$$S = \begin{cases} \frac{4x^{3} - 7x^{2} - 5x + 6}{2x^{3} - 3x^{2} - 7x + 3}, \\ 10x^{3} - 19x^{2} + x + 15 \end{cases}$$
Let $p(x) = 2x^{3} - 6x^{2} + 20x + 3.$
Decide whether or not $p(x)$ is a member of $Span(S)$. If $S = \frac{1}{2}$

$$\frac{p(x) = c_{1}q_{1}(x) + c_{2}q_{1}(x) + c_{3}q_{3}(x)}{2x^{3} - 6x^{2} + 20x + 3}$$

$$= c_{1}(\frac{4x^{3} - 7x^{2} - 5x + 6}{2x^{3} - 7x + 5}) + \begin{bmatrix} \frac{1}{2}x^{3} + \frac{1}{2}x^{3} +$$

Linear Independence of a Finite Set of Vectors

Definition: Let $S = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_n}$ be a set of vectors from a vector space (V, \oplus, \odot) . We say that S is *linearly independent* if and only if the only solution to the equation:

 $(c_1 \odot \vec{v}_1) \oplus (c_2 \odot \vec{v}_2) \oplus \cdots \oplus (c_n \odot \vec{v}_n) = \vec{0}_V \quad \text{PTE}$

is the trivial solution $c_1 = 0, c_2 = 0, ..., c_n = 0$. As before, we will refer to this equation as a *dependence test equation* and sometimes just say "independent" to mean linearly independent. The opposite of being linearly independent is being linearly dependent, which means there is a non-trivial solution to the dependence test equation, that is, where at least one c_i is non-zero.

· linearly independent iff it's not linearly dependent.

Theorem: Let
$$(V, \oplus, \odot)$$
 be a vector space, and $\vec{v} \in V$. Then
 $S = {\vec{v}}$ is linearly independent *if and only if* $\vec{v} \neq \vec{0}_V$.
 $(=)$ contropositive: Assure $\vec{v} = \vec{o}_V$. NTS: $S = \{\vec{v}, \vec{v}\}$
 $\forall \vec{v} = \vec{0}_V$.
 $\forall \vec{v} = \vec{0}_V$. $\nabla \vec{v} = \vec{v} = \vec{0}_V = \vec{0}_V = \vec{0}_V = \vec{0}_V$.
 $\forall \vec{v} = \vec{0}_V$. $\vec{v} = \vec{0}_V = \vec{0}_V = \vec{0}_V = \vec{0}_V$.
 $(=)$ $\forall \vec{v} = \vec{0}_V$. $\vec{v} = \vec{0}_V = \vec{0}_V = \vec{0}_V$.
 $(=)$ $\vec{v} = \vec{0}_V = \vec{0}_V$.
 $\vec{v} =$

Theorem: Let $S = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_n}$ be a set of vectors from a vector space (V, \oplus, \odot) . Then: S is linearly **dependent** if and only if at least one vector (which, without loss of generality, we can set to be \vec{v}_1) is a linear combination of $\vec{v}_2, \vec{v}_3, ..., \vec{v}_n$, that is:

$$\vec{v}_1 = (r_2 \odot \vec{v}_2) \oplus (r_3 \odot \vec{v}_3) \oplus \cdots \oplus (r_n \odot \vec{v}_n),$$

for some scalars $r_2, r_3, ..., r_n \in \mathbb{R}$.

Pf avercise. [(Good test Q!)

A Sufficient Test for Independence of Sets of Polynomials

Theorem: Suppose $S = \{p_1(x), p_2(x), \dots, p_k(x)\}$ is a set of polynomials from \mathbb{P}^n with <u>distinct</u> degrees. Then S is linearly independent. In particular, the set $\{1, x, x^2, \dots, x^n\}$ is linearly independent.

Pf. Next time.

Example: Consider the set
$$S = \{e^{-2x}, e^x, e^{5x}\}$$
.
 $\Box = x \Box P$ $\Box E: \quad C_1 \in \mathbb{P}^{2x} + C_2 \in \mathbb{P}^{x} + C_3 \in \mathbb{P}^{5x} = \mathbb{P}(\mathbb{P})$
 $\bigcirc b = \mathbb{P}^{n \times 1} = \mathbb{P}^{n \times 2} = \mathbb{P}(\mathbb{P})$ $\bigcirc b = \mathbb{P}^{n \times 1} = \mathbb{P}^{n \times 1} = \mathbb{P}(\mathbb{P})$
 $e_1 + e_2 \in \mathbb{P}^{n \times 1} + e_3 \in \mathbb{P}^{n \times 2}$ $(*)$
 $\lim_{x \to -\infty} \left(c_1 + e_2 e^{-x} + e_3 e^{-x} \right) = \lim_{x \to -\infty} (\mathbb{P}(\mathbb{P}(\mathbb{P}))$
Generalization: $c_1 + 0 + 0 = \mathbb{P}(\mathbb{P}) = \mathbb{P}(\mathbb{P})$
 $C_2 e^{-x} + C_3 e^{-x} = \mathbb{P}(\mathbb{P})$
 $\int \sum_{x \to -\infty} (\mathbb{P} + \mathbb{P}) = \mathbb{P}(\mathbb{P}) = \mathbb{P}(\mathbb{P})$
 $\int \sum_{x \to -\infty} (\mathbb{P} + \mathbb{P}) = \mathbb{P}(\mathbb{P}) = \mathbb{P}(\mathbb{P})$
 $\int \sum_{x \to -\infty} (\mathbb{P}) = \mathbb{P}(\mathbb{P}) = \mathbb{P}(\mathbb{P})$
 $\int \sum_{x \to -\infty} (\mathbb{P}) = \mathbb{P}(\mathbb{P}) = \mathbb{P}(\mathbb{P})$
 $\int \sum_{x \to -\infty} (\mathbb{P}) = \mathbb{P}(\mathbb{P}) = \mathbb{P}(\mathbb{P})$
 $\int \sum_{x \to -\infty} (\mathbb{P}) = \mathbb{P}(\mathbb{P})$
 $\int \sum_{x \to -\infty} (\mathbb{P}) = \mathbb{P}(\mathbb{P})$
 $\int \sum_{x \to -\infty} (\mathbb{P}) = \mathbb{P}(\mathbb{P}) = \mathbb{P}(\mathbb{P})$
 $\int \sum_{x \to -\infty} (\mathbb{P}) = \mathbb{P}(\mathbb{P})$
 $\int \sum_{x \to -\infty} (\mathbb{P})$
 $\int \sum_{x \to -\infty} (\mathbb{P}) = \mathbb{P}(\mathbb{P})$
 $\int \sum_{x \to -\infty} (\mathbb{P}) = \mathbb{P}(\mathbb{P})$
 $\int \sum_{x \to -\infty} (\mathbb{P}) = \mathbb{P}(\mathbb{P})$
 $\int \sum_{x \to -\infty} ($