Section 3.8 Isomorphisms

Definition: If V and W are vector spaces, we say that a linear transformation $\underline{T}: V \to W$ is an *isomorphism* if T is both *one-to-one* and *onto*. We also say that T is *invertible*, T is *bijective*, and that V and W are *isomorphic* to each other. If V = W, an isomorphism $T: V \to V$ is also called an *automorphism* or self-isomorphism.

The Usual Dimension Requirement
Providency:
$$T: |R^{n} \rightarrow |R^{m} \text{ invertible}}$$
 iff $n=m$
Theorem: Suppose $T: V \rightarrow W$ is an isomorphism of finite
dimensional vector spaces. Then $\dim(V) = \dim(W)$.
If $\dim(V) < \dim(W)$ the T isn't onto. So this (ont happen:
Then $\dim(V) \geq \dim(W)$. If $\dim(V) > \dim(W)$ then T isn't H since
 $\dim(V) \geq \dim(V) - \operatorname{rank}(T) > 0$. Can't have that so $\dim(V) \ge \dim(V) \ge \dim(V)$.
A partial converse is also true (see the Exercises).
Supprising $\bigcup_{i=0}^{i=1}$
Theorem: If V and W are finite dimensional vector spaces and
 $\dim(V) = \dim(W)$, then there exists an isomorphism $T: V \rightarrow W$.
 $LT \& H \subseteq \operatorname{Corb}$
 $\operatorname{Lorolly}_{V = \operatorname{Vech}_{V = \operatorname{price}_{V = \operatorname{V}}} \& \operatorname{dim}(V) = n$ then $\exists T: V \rightarrow \mathbb{R}^{n}$ that is an
isomorphism I .

Put them together:

Theorem: Two vector spaces *V* and *W* are *isomorphic* to each other *if and only if*:

$$dim(V) = dim(W).$$

The Existence of the Inverse

Definition/Theorem: A linear transformation $T: V \rightarrow W$ is an **isomorphism** of vector spaces **if and only if** there exists another linear transformation:

called the *inverse* of *T*, which is *also* an *isomorphism*, such that if $\vec{v} \in V$ and $T(\vec{v}) = \vec{w} \in W$, then $T^{-1}(\vec{w}) = \vec{v}$, and thus: $(T^{-1} \circ T)(\vec{v}) = \vec{v}$ and $(T \circ T^{-1})(\vec{w}) = \vec{w}$.

In other words, T^{-1} is also a *one-to-one* and *onto* linear transformation.

Furthermore, T^{-1} is **unique**, and T and T^{-1} possess the *cancellation properties:*

$$T^{-1} \circ T = I_V$$
 and $T \circ T^{-1} = I_W$,

where I_V and I_W are the *identity* operators on V and W, respectively.

In particular, if *T* is an *automorphism*, we get: $T^{-1} \circ T = I_V = T \circ T^{-1}$.

The Composition of T with T^{-1}

$$V$$

$$V$$

$$T$$

$$T^{-1} \circ T = I_V$$

$$T \circ T^{-1} = I_W$$

$$T \circ T^{-1} = I_W$$

The Matrix of the Inverse

Theorem: Suppose $T: V \to W$ is an isomorphism of finite dimensional vector spaces. By the previous Theorems, we know that dim(V) = dim(W) = n, say, and there exists $T^{-1}: W \to V$ such that $T^{-1} \circ T = I_V$ and $T \circ T^{-1} = I_W$. If *B* is a *basis* for *V* and *B'* is a *basis* for *W*, then $[T]_{B,B'}$ is an *invertible* $n \times n$ matrix, and: $[T^{-1}]_{B',B} = [T]_{B,B'}^{-1}$.

In particular, if $T: V \rightarrow V$ is an *automorphism*, then:

$$[T^{-1}]_B = [T]_B^{-1}.$$

Application: Solving for Derivatives and Antiderivatives

Application: Solving Ordinary Differential Equations

$$c_n y^{(n)} + \dots + c_2 y^{(2)} + c_1 y' + c_0 y = g(x)$$

Use g(x) to "guess" an appropriate function space:

$$W = Span(\{g_1(x), g_2(x), \dots, g_k(x)\})$$

arising from g(x) and its derivatives.

Application: Curve Fitting

We know from basic algebra that two distinct points determine a unique line.

Similarly, three non-collinear points will determine a unique parabolic function $p(x) = ax^2 + bx + c$.

If the points are collinear, we get a "degenerate" quadratic p(x) = bx + c or a constant polynomial p(x) = c, but notice that all these polynomials are members of \mathbb{P}^2 .

Continuing with this analogy, *four points* with *distinct x-coordinates* will determine a unique polynomial of *at most third degree*, in other words, a member of \mathbb{P}^3 , and so on.

(The fact that the transformation T that we produce is invertible will be seen in the Exercises of Section 5.3).