6.3 Diagonalization of Square Matrices

Definition: Let A be an $n \times n$ matrix. We say that A is **diagonalizable** if we can find an **invertible** matrix C such that:

$$C^{-1}AC=D,$$

where $D = Diag(\alpha_1, \alpha_2, ..., \alpha_n)$ is a diagonal matrix, or equivalently:

$$AC = CD$$
 or $A = CDC^{-1}$

We also say that *C* diagonalizes *A*.

When Can We Diagonalize?

Study:

$$AC = CD$$

Partition C into columns:

$$C = \begin{bmatrix} \vec{v}_1 & | \vec{v}_2 & | \cdots & | \vec{v}_n \end{bmatrix}$$
$$AC = \begin{bmatrix} A\vec{v}_1 & | A\vec{v}_2 & | \cdots & | A\vec{v}_n \end{bmatrix}$$
$$CD = \begin{bmatrix} \alpha_1 \vec{v}_1 & | \alpha_2 \vec{v}_2 & | \cdots & | \alpha_n \vec{v}_n \end{bmatrix}$$

We must satisfy:

$$A\vec{v}_i = \alpha_i \vec{v}_i$$

for each column \vec{v}_i .

The Basis Test for Diagonalizability

Theorem (The Basis Test for Diagonalizability):

Let A be an $n \times n$ matrix. Then, A is diagonalizable *if and only if* we can find a *basis* for \mathbb{R}^n consisting of *n linearly independent eigenvectors* for A, say $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$. If this is the case, then the diagonalizing matrix C is simply the matrix whose *columns* are \vec{v}_1 , $\vec{v}_2, \ldots, \vec{v}_n$, and the diagonal matrix D contains the corresponding *eigenvalues* along the main *diagonal*.

Keep It Real

Theorem: Let A be an $n \times n$ matrix with imaginary eigenvalues. Then A is not diagonalizable over the set of **real** invertible matrices.

Independence of Eigenvectors

Theorem: Let $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ be an ordered set of eigenvectors for an $n \times n$ matrix A, and suppose that the corresponding eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k$ for these eigenvectors are all **distinct**. Then: S is **linearly independent**. Thus, if A has a total of m distinct eigenvalues, we can find **at least** m linearly independent eigenvectors for A.

Use induction on k.

k = 1: Why is $\{\vec{v}_1\}$ independent?

Inductive Hypothesis: Assume $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_j\}$ is independent.

Inductive Step: Prove $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_j, \vec{v}_{j+1}\}$ is still independent:

Geometric and Algebraic Multiplicities

Definitions: Let A be an $n \times n$ matrix with **distinct** (possibly imaginary) eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. Suppose $p(\lambda)$ factors as:

$$p(\lambda) = (\lambda - \lambda_1)^{n_1} \cdot (\lambda - \lambda_2)^{n_2} \cdot \cdots \cdot (\lambda - \lambda_k)^{n_k},$$

where $n_1 + n_2 + \dots + n_k = n$.

We call the exponent n_i the *algebraic multiplicity* of λ_i .

We call $dim(Eig(A, \lambda_i))$ the **geometric multiplicity** of λ_i .

We agree that $dim(Eig(A, \lambda_i)) = 0$ if λ_i is an *imaginary* eigenvalue.

A Deep Theorem from "Algebraic Geometry"

Theorem (The Geometric vs. Algebraic Multiplicity Theorem):

For any eigenvalue λ_i of an $n \times n$ matrix. A, the *geometric multiplicity* of λ_i is *at most equal* to the *algebraic multiplicity* of λ_i .

geometric milt E algebraic nu lt.

 $1 \leq dim(Eig(A, \lambda_i)) \leq n_i$ if λ_i 's an eigenvalue.

Consequently:

Theorem (The Multiplicity Test for Diagonalizability):

Let A be an $n \times n$ matrix. Then A is diagonalizable *if and only if* for all of its eigenvalues λ_i , the geometric multiplicity of λ_i is *exactly equal* to its algebraic multiplicity.

A Sure Bet

Theorem: Let A be an $n \times n$ matrix with n *distinct (real) eigenvalues*. Then A is diagonalizable.

Powers of Diagonalizable Matrices

 $A = CDC^{-1}$

$$A^{2} = (CDC^{-1})(CDC^{-1})$$

= $CD(C^{-1}C)DC^{-1}$
= $CD^{2}C^{-1}$

$$A^k = CD^k C^{-1}$$