
MATH 30: Calculus I SPRING 2018

Notes Dr. Basilio

Updated: 4.22.2018

This document contains:

• Exam day info

• FINAL Exam day info

• Exam 1, Exam 2 and Exam 3 topics covered list

• Chapter 1, 2, 3, 4 notes

• Exam 1, Exam 2 and Exam 3 Practice Problems

• Exam 1, Exam 2 and Exam 3 Practice Problems Answers to even problems

What to expect on Exam day
• I’ll arrive to our classroom before 9:00 am and we’ll have a Q&A where I’ll answer any questions

you have until 9:30 am. Then you’ll bring all of your belongings to the front of the classroom and
take Exam 1 from 9:30-10:30am.

• So, the length of time is 60 minutes. Though I’ll usually allow an extra 5-10 minutes if you want/need
the time.

• You cannot use any calculator or electronic devise during the exam.

• Once the exam starts you may not use the restroom. So please use the restroom before the exam
starts or during the �rst 30 minutes.

• Expect a mix of True/False, Multiple Choice, and Free Response questions.

What to expect for Final Exam
• Monday, May 7 from 9 am - 12pm in our usual classroom.

• I’ll arrive to our classroom before 8:30 am and we’ll have a Q&A where I’ll answer any questions
you have until 8:55 am. Then you’ll bring all of your belongings to the front of the classroom and
take the Final Exam from 9 am - 12 pm.

• You cannot use any calculator or electronic devise during the exam.

• Students will get one bathroom break, must turn in their exam while they leave the room, and only
one student at a time.
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• Expect a mix of True/False, Multiple Choice, and Free Response questions. See the Practice Problems
below.

• It is cumulative exam, so everything we covered is fair game. We’ll have a slight focus on anti-
di�erentiation and integration 4.9 and Chapters 5 material. I’d estimate 40% will cover material
from 4.9 & Ch 5 and 60% will cover material from Ch 1-4.9 (di�erentiation).

Material Covered

EXAM 1: Monday, February 12

Chapter 1: Functions and Models
1.1 - Four Ways to Represent a Function
1.2 - Mathematical Models: A Catalogue of Essen-
tial Functions
1.3 - New Functions from Old Functions
1.4 - Exponential Functions
1.5 - Inverse Functions and Logarithms

Chapter 2: Limits and Derivatives

2.1 - The Tangent and Velocity Problems
2.2 - The Limit of a Function
2.3 - Calculating Limits using the Limit Laws
2.4 - The Precise De�nition of a Limit*
2.5 - Continuity
2.6 - Limits at In�nity; Horizontal Asymptotes
2.7 - Derivatives and Rates of Change
2.8 - The Derivative as a Function

EXAM 2: March 23

Exam 1 Material

Chapter 3: Di�erentiation Rules

3.1 - Derivatives of Polynomials and Exponential
Functions
3.2 - The Product and Quotient Rules
3.3 - Derivatives of Trigonometric Functions

3.4 - The Chain Rule
3.5 - Implicit Di�erentiation
3.6 - Derivatives of Logarithmic Functions
3.7 - Rates of Change in the Natural and Social
Sciences
3.8 - Exponential Growth and Decay
3.9 - Related Rates

EXAM 3: April 27

Chapter 3: Di�erentiation Rules

3.10 - Linear Approximations and Di�erentials

Chapter 4: Applications of Di�erentiation

4.1 - Maximum and Minimum Values
4.2 - The Mean Value Theorem
4.3 - How Derivatives A�ect the Shape of a Graph

4.5 - Summary of Curve Sketching
4.7 - Optimization Problems
4.9 - Antiderivatives

Chapter 5: Integrals

5.1 - Areas and Distances
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FINAL EXAM: May 7
Exam 1, 2, & 3 Material

Chapter 4: Applications of Di�erentiation

4.9 - Antiderivatives

Chapter 5: Integrals

5.1 - Areas and Distances
5.2 - The De�nite Integral
5.3 - The fundamental Theorem of Calculus
5.4 - Inde�nite Integrals and the Net Change Theorem

Notes

Chapter 1: Functions and Models
• Refer to the Precalculus Review notes for more details

• Know the fundamental concepts: FUNCTION, domain, range, independent variable, dependent vari-
able, vertical line test

• Be comfortable using INTERVAL NOTATION to describe the domain of a function

• Four ways to represents a function:
1) de�nition/using words 2) using a table/graphs 3) equations 4) function notation

• piece-wise de�ned functions, absolute value function (know this de�nition)

• increasing, decreasing functions

• types of functions: constant functions, linear functions, polynomial functions (know terms: degree,
roots), power functions, radical/root functions, rational functions, algebraic functions, trigonometric
functions, exponential functions, logarithmic functions

• be familiar with examples of each of the above functions and know how to generate their graphs

• TRANSFORMATION of functions:
vertical translations, horizontal translations, vertical dilations/stretching, horizontal dilations/stretch-
ing, re�ection across the x-axis, re�ection across the y-axis

• COMBINATION of functions:
know what the following are and how to �nd their domains: (f + g)(x), (f − g)(x), (f · g)(x),
(f/g)(x), (f ◦ g)(x), (g ◦ f)(x)

• EXPONENTIAL functions: f(x) = bx, base b > 0, b 6= 1.
Know their properties, graphs according to two cases: Case I: b > 1 & Case II: 0 < b < 1

• be able to work with the “Laws of Exponents” on page 47

• Example 3 on page 50-51 on Half-Lifes

• THE NUMBER e – READ HAND-OUT
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• INVERSE functions: they exists if and only if they are one-to-one if and only if they pass the hori-
zontal line test; how to �nd algebraically and graphically; inverse properties

• domain of f−1 = range of f ; range of f−1 = domain of f

• LOGARITHMIC functions: f−1(x) = logb(x) are the inverse functions to the exponential functions
f(x) = bx

Know their properties, graphs according to two cases: Case I: b > 1 & Case II: 0 < b < 1

• Log Eq↔ Exp Eq

• Know: Laws of Logarithms on page 60

• Natural logarithm = ln(x) = loge(x).

• Know the graph of the SIX TRIGONOMETRIC FUNCTIONS: sin(x), cos(x), tan(x), cot(x), sec(x),
csc(x)

• INVERSE TRIGONOMTERIC functions:
sin−1(x) = arcsin(x), cos−1(x) = arccos(x), tan−1(x) = arctan(x) and know their domain and
ranges and graphs:

•

•

•

•
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Chapter 2: Limits and Derivatives
• Section 2.1: The Tangent and Velocity Problems

TANGENT LINE PROBLEM (TLP): Given a curve y = f(x) and a point P = (a, f(a)) on the curve,
�nd the “line that best �ts the curve near the point P .” This is called the TANGENT LINE of the curve
y = f(x) at the point P .

• Know what a secant line is. If y = f(x) is a function and P = (x1, y1) and Q = (x2, y2) are two
points on the curve, then the secant line is the straight line passing through these two points. The
slope is written msec or mPQ

• To �nd the equation of the tangent line T you only need to �nd the slope, mtan(P ), because you
already know the x and y coordinates of the point P and you can use the point-slope formula to
�nd the equation of the line.

• We solve the TLP using the in�nite PROCESS to �nd the slope mtan(P ): (1) �nd an approximate
solution with a nearby point Q close to P , (1 1/2) �nd a better approximate solution using another
point Q that is closer to P than in the previous step, (2) limit process:

mtan(P ) = lim
Q→P

msec = lim
∆x→0

∆y

∆x

INSTENTANEOUS VELOCITY PROBLEM (IVP): Given a moving object that is traveling a distance of
s(t) after t seconds, �nd the velocity of the object at the instant t1.

• Know what average velocity is. If y = s(t) is a function that tells us the distance traveled and t1
and t2 are two di�erent times, then the interval of time is [t1, t2]. The change in time is written
∆t = t2 − t1. The distance traveled between t1 and t2 is ∆s = s(t2) − s(t1). Thus the AVERAGE
VELOCITY over the interval [t1, t2] is:

vavg =
distance

time =
∆s

∆t

• The instantaneous velocity of the object at the instant t1 is denoted by vinst(t1)

• We solve the IVP using the in�nite PROCESS to �nd the instantaneous velocity vinst(t1): (1) �nd
an approximate solution with a nearby time t2 close to t1, (1 1/2) �nd a better approximate solution
using another time t2 that is closer to t1 than in the previous step, (2) limit process:

vinst(t1) = lim
t2→t1

vavg = lim
∆t→0

∆s

∆t

Note the similarity between the solutions to these two problems!

• Section 2.2: The Limit of a Function

• DEFINITION OF A LIMIT: lim
x→a

f(x) = L means “as x approaches a, but x 6= a, either from smaller
or larger values, the values of f(x) approach the single value L”
This de�nition guarantees we avoid the problems with functions that are not de�ned at a, ie f(a) is
unde�ned, and replaces the KEY IDEA with the INFINITE PROCESS of approximation. The values
of x are approaching a but never allowed to equal a and the limit L is the TREND that f(x) seems
to be approaching.
When the above fails, we say the limit “does not exist” and put lim

x→a
f(x) = DNE
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• One-Sided Limits:
LHL: limx→a− f(x) = L key is x < a as x approaches a
RHL: limx→a+ f(x) = R key is x > a as x approaches a

• For example, if

f(x) =

{
−2x+ 6, if x < 1

3x+ 1, if x ≥ 1

Then the left-handed limit as x → 1 is limx→1− f(x) = limx→1−(−2x + 6) = −2(1) + 6 = 4.
Why did we choose f(x) = −2x + 6? because as x → 1−, only values of x strictly less than 1 are
considered so x < 1. The right-handed limit is limx→1+ f(x) = limx→1+(3x+ 1) = 3(1) + 1 = 4
because x > 1. Notice that LHL 6= RHL.

• EXISTENCE of a limit: limx→a f(x) = L exists if and only if LHL=RHL
(ie. if limx→a− f(x) = L = limx→a+ f(x))

• INFINITE LIMITS: lim
x→a

f(x) = +∞ means “as x approaches a, but x 6= a, either from smaller or
larger values, the values of f(x) becomes arbitrarily large positive”
Other ways to express this: “f(x) becomes in�nite positive as x approaches a” or “f(x) increases
without bound as x approaches a”

• INFINITE LIMITS: lim
x→a

f(x) = −∞ means “as x approaches a, but x 6= a, either from smaller or
larger values, the values of f(x) becomes arbitrarily large negative”
Other ways to express this: “f(x) becomes in�nite negative as x approaches a” or “f(x) decreases
without bound as x approaches a”

• The main examples are:

lim
x→a+

(
1

x− a

)
=

1

+0
= +∞ lim

x→a−

(
1

x− a

)
=

1

−0
= −∞

and, more generally,

lim
x→a+

(
1

(x− a)n

)
=

1

+0
= +∞

lim
x→a−

(
1

(x− a)n

)
=

{
1

+0 = +∞, if n is even
1
−0 = −∞, if n is odd

• SHORTCUTS: ±C
±0

= ±∞ This is really four di�erent possibilities: (here C 6= 0 is constant)

+C
+0 = +∞ +C

−0 = −∞ −C
+0 = −∞ −C

−0 = +∞

• VERTICAL ASYMPTOTES (VAs): A function can have many vertical asymptotes. Vertical asymp-
totes are vertical lines, so they have the formx = a. By de�nition, the linex = a is a vertical asymptote
if any of the following occurs: limx→a− f(x) = ±∞ or limx→a+ f(x) = ±∞. Intuitively f(x) tries
to HUG the vertical lines x = a.
How to �nd VAs: (1) look for values a where denominator=0, (2) check that num6= 0 at a
(this makes sense in light of the above shortcuts for �nding in�nite limits)

• HOW CAN LIMITS FAIL TO EXIST: lim
x→a

f(x) = L

1. LHL 6= RHL
2. Wild Oscillation
3. In�nite
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• CAREFUL: in�nite limits are technically DNE! Though we write limx→a f(x) = ±∞ to indicate the
trend (it grows or decreases without bound), it doesn’t approach a real number L. Thus, we consider
in�nite limits as DNE.

• Section 2.3: Calculating Limits Using the Limit Laws

• Know the statement of the eleven LIMIT LAWS on pages 95, 96, 97:
Suppose that c is a constant and the limits limx→a f(x) and limx→a g(x) both exists.

LIMIT LAWS
1. limx→a[f(x) + g(x)] = [limx→a f(x)] + [limx→a g(x)]

2. limx→a[f(x)− g(x)] = [limx→a f(x)]− [limx→a g(x)]

3. limx→a[cf(x)] = c[limx→a f(x)]

4. limx→a[f(x) · g(x)] = [limx→a f(x)] · [limx→a g(x)]

5. limx→a[f(x)
g(x) ] = limx→a f(x)

limx→a g(x) (if limx→a g(x) 6= 0)

6. limx→a[f(x)]n = [limx→a f(x)]n

7. limx→a[c] = c

8. limx→a[x] = a

9. limx→a[xn] = an (n a positive integer)

10. limx→a[ n
√
x] = n

√
a (if n

√
a exists)

10. limx→a[ n
√
f(x)] = n

√
limx→a f(x) (if exists)

• DIRECT SUBSTITUTION: whenever limx→a f(x) = f(a) ie “you can just plug-in x = a into f(x)”
“DSub” works for lots of functions! Like polynomials and rational functions as long as a is in the
domain

• LIMITS AND 0
0 : when DSub fails and you get 0

0 the limit can still exist and take on any value. There’s
two methods to know: (1) Cancellation method; (2) Conjugate method

Example of Cancellation method: lim
h→0

(3 + h)2 − 9

h
= 0

0

lim
h→0

(3 + h)2 − 9

h
= lim

h→0

(9 + 6h+ h2)− 9

h

= lim
h→0

6h+ h2

h

= lim
h→0

6 + h (cancel the h is ok bc h 6= 0)

= 6 (evaluate the limit using LLs)
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Example of Conjugate method: lim
t→0

√
t2 + 9− 3

t2
= 0

0

lim
h→0

√
t2 + 9− 3

t2
= lim

h→0

√
t2 + 9− 3

t2
·
√
t2 + 9 + 3√
t2 + 9 + 3

(multiply by conjugate)

= lim
h→0

(
√
t2 + 9− 3)(

√
t2 + 9 + 3)

t2(
√
t2 + 9 + 3)

= lim
h→0

(t2 + 9)− 9

t2(
√
t2 + 9 + 3)

(foil top, pro tip: leave bottom un-multiplied)

= lim
h→0

t2

t2(
√
t2 + 9 + 3)

(notice we can cancel the t2)

= lim
h→0

1√
t2 + 9 + 3

(cancel the t2 is ok bc t 6= 0)

=
1√

0 + 9 + 3
=

1

6
(evaluate the limit using LLs)

• Know: Examples 7 and 8 on page 100

• SQUEEZE Theorem: if f(x) ≤ g(x) ≤ h(x) for all values close to a except possibly at a itself AND
limx→a f(x) = L = limx→a h(x), THEN limx→a g(x) = L

• Be able to use the Squeeze Theorem to show that limx→0 x
2 sin( 1

x) = 0 (example 11)

• Section 2.5: Continuity

• Memorize the de�nition of Continuity: The function f(x) is continuous at x = a if lim
x→a

f(x) = f(a) .
This means that the following THREE conditions are ALL satis�ed:

(I) f(a) is de�nied
(II) lim

x→a
f(x) exists (i.e. LHL=RHL)

(III) f(a) = lim
x→a

f(x)

• Be comfortable, with the alternative de�nition of continuity as well (replace II-III with II’) limh→0 f(a+
h) exists, III’) f(a) = limh→0 f(a+ h)).

• To check if a function is continuous at a point x = a, you must verify that (I), (II), and (III) are ALL
true. However, to show that a functions is NOT continuous at a point x = a, AT LEAST ONE of the
conditions (I), (II), or (III) needs to FAIL.

• Points of DISCONTINUITY. We say that x = a is a removable discontinuity of the function f if
limx→a f(x) exists (ie LHL=RHL), but f(a) 6= limx→a. We say thatx = a is a non-removable discontinuity)
of the function f if limx→a f(x) does NOT exist (ie LHL 6=RHL). In other words, you see a “gap” be-
tween the function near x = a.

• Continuous on an interval= f is continuous at every point inside the interval

• One-sided continuity:
LHC: f is continuous at x = a from the left if limx→a− f(x) = a.
RHC: f is continuous at x = a from the right if limx→a+ f(x) = a.
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• Continuity Theorem(s):
(T5a) Polynomials are continuous everywhere, ie on interval (−∞,+∞).
(T5b) Rational functions are continuous on their domains (open intervals).
(T7) Root functions, Trigonometric functions, Inverse Trigonometric functions, Exponential func-
tions, Logarithmic functions are ALL continuous on their domains (open intervals).
(T8/9) The composition of two continuous functions is continuous on its domain For example,
P (x) = x4 − 15x + 6 is continuous at all real numbers. (Why? Check that all 3 conditions are
true!)

• Intermediate Value Theorem (IVT):
Assume that f is continuous on the closed interval [a, b] and f(a) 6= f(b). Then f assumes every
values between f(a) and f(b). More precisely, ifN is any number such that f(a) < N < f(b), then
there is some number c ∈ (a, b) (i.e. a < c < b) so that f(c) = N .

• Know how to show that a polynomial equation, or more complicated equation, has a root by using
the IVT as in Example 10 on page 123.

• Section 2.6: Limits at In�nity; Horizontal Asymptotes

• LIMITS AT INFINITY: lim
x→±∞

f(x) = L means “as x grows arbitrarily large, the values of f(x)

approach the single value L”
This means that the graph of the function y = f(x) HUGS the horizontal like y = L for large
positive values of x.
We also say “as x approaches positive in�nity” to express x→ +∞ even though x does not approach
any real number.

• LIMITS AT INFINITY: lim
x→±−∞

f(x) = L means “as x decreases arbitrarily negatively large, the
values of f(x) approach the single value L”
This means that the graph of the function y = f(x) HUGS the horizontal like y = L for large
negative values of x.
We also say “as x approaches negative in�nity” to express x → −∞ even though x does not ap-
proach any real number.

• SHORT CUTS: ±C
±∞

= 0 This is really four di�erent possibilities: (here C 6= 0 is constant)

+C
+∞ = 0 1

−∞ = 0 1
+0 = +∞ 1

−0 = −∞

NOTE WELL: These are not really equal signs, but limits in disguise.

• Know what a DOMINANT TERM of a rational function is.

• The main theorem for computing limits at in�nity is
Dominant Term Theoream (DTT) Whenever you take the limit of a rational function AT INFINITY,

you can simply look at the dominant terms:

lim
x→±∞

(
anx

n + an−1x
n−1 + · · ·+ a1x

1 + a0

bkx
k + bk−1xk−1 + · · ·+ b1x1 + b0

)
= lim

x→±∞

(
anx

n

bkxk

)
=


an
bn
, if n = k

0, if n < k

±∞, if n > k

In the last case, when n > k, you need to be careful and pay attention to signs. Use the shortcuts
for �nding in�nite limits from section 2.2.
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• HORIZONTAL ASYMPTOTES (HAs): A function can have at most two horizontal asymptotes. Hor-
izontal asymptotes are horizontal lines, so they have the form y = c. By de�nition, the line y = R
is a horizontal asymptote (from the right) if limx→+∞ f(x) = R and
the line y = L is a horizontal asymptote (from the left) if limx→+∞ f(x) = L. Intuitively f(x) tries
to HUG the horizontal line y = L or y = R for very large x values.
How to �nd: compute limx→+∞ f(x) or limx→−∞ f(x)

• INFINITE LIMITS AT INFINITY: this is when lim
x→±∞

f(x) = ±∞
Many functions do this like polynomials.

• Study Examples 4 and 5 on pages 130-131

• Section 2.7: Derivatives and Rates of Change

• TLP: we solve the tangent line problem at P = (a, f(a)) by �nding the slope of the tangent line:

mtan(a) = lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h

because as x approaches a, the point Q = (x, f(x)) on the curve y = f(x) approaches the point P
so the above limit is really the same thing as: mtan(P ) = lim∆x→0

∆y
∆x from section 2.1

• EQUATION OF THE TANGENT LINE:
y − f(a) = mtan(a)) · (x− a) or y = f(a) +mtan(a)) · (x− a)

• IVP: we solve the instantaneous velocity problem at any time t = a by:

vinst(a) = lim
t→a

s(t)− s(a)

t− a
= lim

h→0

s(a+ h)− s(a)

h

because as t approaches a, the average velocity of the object over the interval of time [a, t] is vavg =
s(t)−s(a)

t−a , so the above limit is really the same thing as: vins(a) = lim∆t→0
∆s
∆t from section 2.1

• Both Ancient Problems are solved in the same way, we give this a new name “derivative”

• The DERIVATIVE OF A FUNCTION AT x = a:

f ′(a) =
df

dx

∣∣∣∣
x=a

= lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h

So, mtan(a) = f ′(a) and vins(a) = f ′(a)

• INSTENTANEOUS RATE OF CHANGE (IROC): IROC= limit(AROC)
average rate of change of a function is AROC = f(x2)−f(x1)

x2−x1
so

IROC = lim
∆x

f(x2)− f(x1)

x2 − x1
= lim

∆x→0

∆f

∆x
=

df

dx

∣∣∣∣
x=x1

This is the same as the derivative so why another way to write it? Example 6 on page 146 is why

• Section 2.7: Derivatives and Rates of Change

• DERIVATIVE AS A FUNCTION: f ′(x) = limh→0
f(a+h)−f(a)

h
The domain of the derivative function is the set of all values a for which f ′(a) exists. In this case,
we say that f is DIFFERENTIABLE at x = a.
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• Be able to sketch the values of f ′(x) quickly from a graph and determine the graph of f ′(x).

• Be able to �nd f ′(x) using the limit de�nition. We studied limits in great detail so that we can �nd
derivatives! Now’s your chance to use that theory :-)

• THEOREM (DIFFERENTIABLE IMPLIES CONTINUOUS): If f is di�erentiable at x = a, then f is
continuous at x = a.
This is a very useful theorem, because computing a derivative is much easier than having to very
all 3 conditions in the de�nition of continuity. You should still check condition (I), but then if the
derivative exists at this point, the function will be continuous there. Once we learn how to compute
derivatives quickly using shortcuts this theorem becomes more powerful!

• WARNING: The converse to this theorem is NOT true. This means that you may have a function
that is continuous at x = a but does not have a derivative there. The easiest example of this is the
absolute value function at x = 0.

• HOW CAN f ′(a) DNE?
1. f not continuous at x = a
2. f has a vertical tangent line at x = a, i.e. limx→a |f ′(a)| = ±∞
3. f has a cusp/corner at x = a, i.e. LHL 6= RHL

• HIGHER DERIVATIVES: f ′′(x) = d2f
dx2 , f ′′′(x) = d3f

dx3 , . . ., f (n)(x) = dnf
dxn

• ACCELERATION: a(t) = v′(t) = ds
dt

Chapter 3: Di�erentiation Rules
• Section 3.1: Derivatives of Polynomials and Exponential Functions

• f is a di�erentiable function whenever we know that the corresponding derivative function f ′(x)
exists for some interval of values.

• COMMON NOTATIONS FOR DERIVATIVES:

f ′(x) = mtan(x) = vins(x) =
df

dx

Here’s are few more that you should know:

f ′(x) = y′ =
dy

dx
= ṡ and f ′(x) =

d

dx

[
f(x)

]
= Dx[f(x)] = Df(x)

• Derivative Rules: Part 1

DR1: Constant Rule: d

dx
[C] = 0 DR2: Line Rule: d

dx
[ax+ b] = a

DR3: Power Rule: d

dx
[xn] = nxn−1 DR4: Constant Multiplier Rule: d

dx
[Cf(x)] = Cf ′(x)

DR5: Sum/Di�erence Rule: d

dx
[f(x)± g(x)] = f ′(x)± g′(x)

DR: Exp Rule: d

dx
[ex] = ex

• Using DRs 1-5, we can �nd the derivative of any polynomial function

• A polynomial p(x) of degree n, can have at most (n− 1) turning points because it can have at most
(n− 1) HTLs, ie. solutions to dy

dx = 0.
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• SVA: position=s(t), velocity=v(t) = s′(t), acceleration=a(t) = v′(t) = s′′(t)

• De�nition of e: the slope of the tangent line of f(x) = ex at (0, 1) is 1

• The derivative of ex is itself!

• Section 3.2: The Product and Quotient Rules

• Derivative Rules: Part 2

DR6: Product Rule: d

dx
[f(x) · g(x)] = f ′(x)g(x) + f(x)g′(x)

DR7: Quotient Rule: d

dx

[
f(x)

g(x)

]
=
f ′(x)g(x)− f(x)g′(x)

(g(x))2

• Know how to use these DRs individually and also in combination with the previous DRs

• HIGHER DERIVATIVES: f ′′(x) = d2f
dx2 , f ′′′(x) = d3f

dx3 , . . ., f (n)(x) = dnf
dxn

• Section 3.3: Derivatives of Trigonometric Functions

• Derivative Rules: Part 3

DR8: Sine Rule: d

dx
[sin(x)] = cos(x) DR9: Cosine Rule: d

dx
[cos(x)] = − sin(x)

• Know how �nd very high number of derivatives of sine or cosine functions, e.g d27

dx27
[cos(x)]

• Special Trig limits:

lim
x→0

sin(x)

x
= 1 and lim

x→0

cos(x)− 1

x
= 0

• Know how to use the special trig limits to evaluate limits

• Know how to prove the Sine Rule (DR8) and the Cosine Rule (DR9) using the trig identities and the
special trig limits. The trig identities will be provided so you don’t have to memorize them but you
do for the special trig limits.

• DR10: Trig Rule:
d

dx
[sec(x)] = sec(x) tan(x)

d

dx
[csc(x)] = − csc(x) cot(x)

d

dx
[tan(x)] = sec2(x)

d

dx
[cot(x)] = − csc2(x)

• Know how to derive the formulas from DR10 using the Quotient Rule and the Sine and Cosine DRs

• Section 3.4: The Chain Rule

• Review composite functions, be able to recognize the “inside” and “outside” functions

• DR11: Chain Rule: d

dx
[f(g(x))] = f ′(g(x)) · g′(x)

• Be able to compute derivatives using the chain rule and previous rules in combination

• DR12: General Exp Rule: d

dx
[bx] = bx · ln(b)

12



• Section 3.5: Implicit Di�erentiation

• Understand the di�erence between an implicitly de�ned function and an explicitly de�ned function

• Know how to use the technique of implicit di�erentiation to �nd the derivative of a function de�ned
implicitly

• Be able to use implicit di� to �nd all HTLs and VTLs

• DR 13: Inverse Trig Rule:
d

dx

[
sin−1(x)

]
=

1√
1− x2

d

dx

[
cos−1(x)

]
=

−1√
1− x2

d

dx

[
tan−1(x)

]
=

1

1 + x2

d

dx

[
cot−1(x)

]
=
−1

1 + x2

d

dx

[
csc−1(x)

]
=

−1

x
√
x2 − 1

d

dx

[
sec−1(x)

]
=

1

x
√
x2 − 1

• Section 3.6: Derivatives of Logarithmic Functions

• DR14: Natural Log Rule: d

dx
[ln(x)] =

1

x

• Know the proof of DR 14

• DR15: Log Rule: d

dx
[logb(x)] =

1

x
· 1

ln(b)

• Know the proof of DR 15

• Recall that logarithms have very useful properties:
(1) logb(A ·B) = logb(A) + logb(B)

(2) logb

(
A

B

)
= logb(A)− logb(B)

(3) logb(A
r) = r · logb(A)

• Be able to use the log properties to simplify the computation of derivatives of functions

• Know how to use the technique: Logarithmic Di�erentiation:
Step 1: Write the function as y = f(x).
Step 2: Apply ln[ ] to both sides of the equation from Step 1.
Step 3: Simplify using the log properties as much as possible.
Step 4: Implicitly di�erentiate both sides
Step 5: Solve for dy

dx .

• Section 3.7: Rates of Change in the Natural and Social Sciences

• The change in x by ∆x = x2 − x1

The change in our function f by ∆f = f(x2)− f(x1)

• The average rate of change of f over the interval [x1, x2] is given by

AROC =
∆f

∆x
=
f(x2)− f(x1)

x2 − x1
.
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• The derivative is the limit of the average rate of change as the interval shrinks to zero, or as x2 → x1:

df

dx

∣∣∣∣
x1

= lim
x2→x1

∆f

∆x
.

• if x2 is close to x1 then the average rate of change is approximately the derivative at x1, so:

df

dx

∣∣∣∣
x1

≈ ∆f

∆x
(for x2 ≈ x1)

• Sign of the derivative tells you the function is increasing/decreasing:
if the derivative is positive at x = x1, then the numerator of the AROC is positive for x2 close to x1

so f(x1) < f(x2). Thus f is increasing for points close to x1!
Similarly, if the derivative is negative at x = x1, then for x2 close to x1 the function f is decreasing
for points close to x1!

• Follow that particle!
Know the following: velocity, acceleration, particle at rest, particle moving forward/backwards, di-
agram to represent motion, distance traveled, speeding up/down

• Something’s �shy:
Stable population

• Economics:
The derivative is called the marginal cost and since

C ′(x) =
dC

dx
≈ C(x+ 1)− C(x)

the marginal cost of producing x items is approximately equal to the cost of producing one more
unit–the (x+ 1)th unit!
The units of marginal cost are units of currency per units of items

• Supply/Demand

• Smooth Operator:
position (s(t)), velocity (v(t) = s′(t)), acceleration (a(t) = v′(t) = s′′(t)), Jerk J(t) = a′(t) =
s′′′(t)), snap (S(t) = J ′(t) = s′′′′(t)).

• Section 3.8: Exponential Growth and Decay

• Recall exponential functions f(t) = bt. When b > 1 we call this exponential growth, when 0 < b <
1 we call this exponential decay (See Chapter 1 for a review)

• Theorem: The solutions to the “natural growth/decay equation,” df
dt = kf(t),

are of the form: f(t) = Cekt. The constant C = f(0) is called the initial condition (or amount, or
population, etc).

• Connection of exponential functions, ekt, with exponential functions base b, bt:
Since ekt = (ek)t we have that b = ek so that when k > 0, b > 1 (look at the graph of ex to convince
yourself of this), and when k < 0, then ek = 1

e|k|
so that b = 1

e|k|
< 1.

This is why we also call f(t) = ekt exponential growth for k > 0 and exponential decay for k < 0.

• Di�erential Equations: an equation involving a function and its derivatives. The goal in solving a
di�erential equation is to �nd the function or functions that make the equation true when substi-
tuted.

14



• Know how to set-up equations for doubling time and half-life

• Predator and Preys: just be able to understand how an equation with derivatives can be interpreted
(p. 9 on worksheet)

• Compounding Interest:
Interest is compounded n times a year: A(t) = P

(
1 +

r

n

)nt
Interest is compounded continuously: A(t) = Pert

Keep in mind, the interest rate r needs to be in decimal form in formulas

• Section 3.9: Related Rates

• How to solve “Related Rates Problems (RRPs)”:
Step 1: Read the problem to determine key terms and units.
Step 2: Determine:

• All quantities that are changing in time (also which are constant in time).
• Assign appropriate mathematical notation to these quantities.
• Draw a diagram if possible
• Translate all of the information given in the problem into mathematical notation, called the

“Givens”.
? Use the units to help you match it with the correct quantities.
? Use the key term “rate” as code for derivative.

Step 3: Find an equation or equations that relates the quantities from Step 1.
Step 4: Implicitly Di�erentiate both sides of the main equation from Step 2 with d

dt
Step 5: Substitute the “givens” into the resulting equation from Step 3 and solve for the unknown
rate.

• The “EME System” highlights all of the essential steps in the process of solving word problems and
emphasizes the importance of contextualizing your �nal answers in writing:
Step 1: “English” (E)
Step 2: “English to Math” (E →M)
Step 3: “Math” (M)
Step 4: “Math to English” (M → E)

• Section 3.10: Linearization and Di�erentials

• A function f is locally linear near at x = a whenever f is di�erentiable at x = a. That is, f ′(a)
exists.

• The local linearization of f at x = a is the linear function: L(x) = f(a) + f ′(a)(x− a)

• Linear Approximation of f at x = a: If x ≈ a, then f(x) ≈ L(x)

• Know how to apply the above linearization to approximate functions as in the examples from the
worksheets.

• The di�erential of a variable x, dx, is another independent variable. It is equivalent to think of
dx as just any real number. However, it is usually used as the change in x: dx = ∆x = x2 − x1.

• If y = f(x) and f is a di�erentiable function, then we de�ned the di�erential of y, dy, by the
equation: dy = f ′(x)dx. Sometimes I will also use the notation: df = f ′(x)dx.
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• Meaning of di�erential: The di�erential dy = f ′(x)dx approximates the actual change in y, ∆y, if
x changes by dx.

• Know how to compute di�erentials and also use them to approximate the change in a function.

Chapter 4: Applications of Di�erentiation
• Section 4.1: Maximum and Minimum Values

• Local vs Global Extrema:
•Given a function f , we say that f(c) is a global (or absolute)maximumvalue of f provided that
f(c) ≥ f(x) for all x in the domain of f . Similarly, we call f(c) a global (or absolute) minimum
value of f provided that f(c) ≤ f(x) for all x in the domain of f .
• Given a function f , we say that f(c) is a local (or relative) maximum value of f provided that
f(c) ≥ f(x) for all x near c. More precisely, there exists a small interval I containing cwhere f(c)
is the global maximum on I . Similarly, we call f(c) a local (or relative) minimum value of f
provided that f(c) ≤ f(x) for all x near c.
• Any maximum or minimum may be called an extreme value of f .
• By extrema of f we mean either the maximum or minimum value of f .

• Critical Numbers/Values/Points:
•We call x = c a critical number of a function f if either f ′(c) = 0 or f ′(c) = DNE.
• If c is a critical number of f , we call (c, f(c)) a critical point of f and f(c) a critical value of f .

• Fermat’s Theorem: IF f has a local extrema at x = c THEN c is a critical number of f .

• Extreme Value Theorem (EVT): A continuous function on a closed interval must attain both its
maximum and minimum values at some points inside the interval.
More precisely, if f is continuous on the closed interval [a, b], then there exists number c ∈ [a, b]
where f(c) is the global maximum value of f on [a, b] and there exists a number d ∈ [a, b] where
f(d) is the global minimum value of f on [a, b].

• How to �nd extrema on a closed interval:
(This is called the “closed interval method” in the book).
Let f be a continuous function on the closed interval [a, b]. To �nd the extrema:
Step 1: Find all the critical numbers c ∈ (a, b) and evaluate f at these numbers.
Step 2: Evaluate f at the endpoints, i.e. �nd f(a) and f(b).
Step 3: Select the largest and smallest values from the list of values found in Steps 1 and 2.

• Section 4.2: Rolle’s and Mean Value Theorem

• Rolle’s Theorem:
Assume that we have a function f on the closed interval [a, b] that satis�es the following assump-
tions:

(1) f is continuous on [a, b]

(2) f is di�erentiable on (a, b)

(3) f(a) = f(b)

THEN there exists a number c ∈ (a, b) where f ′(c) = 0.
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• Know the statement of Rolle’s Theorem and be able to verify if a function satis�es the conditions of
the theorem

• Know how to solve Activity 2, that it to show that a polynomial has at most one root.

• Mean Value Theorem:
Assume that we have a function f on the closed interval [a, b] that satis�es the following assump-
tions:

(1) f is continuous on [a, b]

(2) f is di�erentiable on (a, b)

THEN there exists a number c ∈ (a, b) such that f ′(c) =
f(b)− f(a)

b− a
or, equivalently, f(b)− f(a) = f ′(c)(b− a).

• Know the statement of Mean Value Theorem and be able to verify if a function satis�es the conditions
of the theorem

• Section 4.3: Maximum and Minimum Values

• Theorem: Derivative zero implies constant:
• IF f ′(x) = 0 for every x in an interval (a, b), THEN f is constant on (a, b).
• IF f ′(x) = g′(x) for every x in an interval (a, b), THEN f(x) = g(x) + C on (a, b) for a constant
C .

• The increasing/decreasing Test (ID Test):
• If f ′(x) > 0 for every value of x inside an open interval I , THEN f is increasing on the interval I .
• If f ′(x) < 0 for every value of x inside an open interval I , THEN f is decreasing on the interval
I .

• Be able to use the ID Test to determine where a function is increasing/decreasing

• First Derivative Test (FDT):
Let f be a continuous function and c a critical number of f .
• IF f ′ changes from positive to negative at c, THEN f has a local maximum at c.
• IF f ′ changes from negative to positive at c, THEN f has a local minimum at c.
• IF f ′ is positive to the left and to the right of c, THEN f does NOT have a relative extrema at c.
• IF f ′ is negative to the left and to the right of c, THEN f does NOT have a relative extrema at c.

• I call the FDT: “the local/relative extrema hunter”

• CSI Lines for f ′:

• By building a CSI Line for f ′ you can apply the First Derivative Test and �nd LOCAL/RELATIVE
extrema.
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• Be sure to be able to build CSI lines for f ′ and to be able to sketch a function given a complete CSI
Line for f ′.

• Concavity and Points of In�ection:
• A function f is concave UP on an open interval I if the graph of f lies ABOVE all of its tangent
lines on the interval I .
Geometrically this means: the curve is bending up!
• A function f is concave DOWN on an open interval I if the graph of f lies BELOW all of its
tangent lines on the interval I .
Geometrically this means: the curve is bending down!
• A point P = (a, f(a)) is a point of in�ection if the function f changes concavity at P either
from positive to negative, or negative to positive.

• Concavity Test:
• IF f ′′(x) > 0 for every value of x inside an open interval I , THEN f is concave UP on the interval
I .
• IF f ′′(x) < 0 for every value of x inside an open interval I , THEN f is concave DOWN on the
interval I .

• CSI Lines for f ′′:

• Second Derivative Test (FDT):
Suppose that f ′′ exists and is continuous near c.
• IF f ′(c) = 0 and f ′′(c) < 0, THEN f has a local maximum at c.
• IF f ′(c) = 0 and f ′′(c) > 0, THEN f has a local minimum at c.
• IF f ′(c) = 0 and f ′′(c) = 0, THEN the test fails and anything can happen.
In this case, use the First Derivative Test.

• Section 4.5: Summary of Curve Sketching

• CSI List:
When sketching a function f by hand. Consider:

Tools from precalculus:

(1) Domain/Continuity

(2) Intercepts (x and y)

(3) Symmetry (if any), Periodicity (if any)

Tools from calculus:
(1) Asymptotes (HAs, VAs)
(2) CSI Line for f ′: ID Test/First Derivative

Test, Local Extrema
(3) CSI Line for f ′′: Cocavity Test, Points of

In�ection

• Be able to sketch graphs of functions by using the CSI List. On some questions, you might be given
a �lled out CSI List and be asked to sketch a function from that info.
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• Section 4.7: Optimization Problems

• An optimization problem (OP) is a problem where one seeks the best solution, either the minimum
or maximum value to a mathematical model (or where they occur).
A Primary Equation (PE) associated to an OP is an equation involving the quantity that is to be
optimized.
A Constraint (or Secondary) Equation (SE) associated to an OP is an equation(s) that constrains
the quantities involved to be within certain bounds.

• How to solve “Optimization Problems (OPs)”:
Step 1: Read the problem to determine key terms and units.
Step 2: Draw a diagram and introduce notation.
Step 3: Determine the Primary Equation (PE).

• Identify the quantity which is to be optimized.
Step 4: Determine the Constraint/Secondary Equation (C/SE).

• Identify the constraints, if any.
? The constraints could be intervals, or equations.

• Another purpose of the constraint equation is that it helps reduce the problem to a one-
variable problem.
Step 5: Solve the OP by �nding the extrema of the quantity that is to be optimized from Step 3. Don’t
forget units!

• Pro tip: Usually solving for f ′(x) = 0 is enough in applications since it is obvious which CN
will be the extrema sought. In other words, it is usually unnecessary to �ll out complete CSI Lines
and use the FDT or SDTs.

• Pro tip: If you determined an appropriate interval in Step 4, don’t forget to check the end-
points!

• Economic Optimization Problems: Cost, Revenue, Pro�t:
Key: Marginal functions are derivatives
The revenue function is simply: R(x) = px, where p is the price of the items sold. The units of p
are currency per items, so that the revenue function has the units of currency.
In simple problems the price is constant but there are also situations where it is more complicated.
When the price is a function of the number of items demanded, we write this as p(x). Economists
call this a demand function. Thus, we expect that as x (number of items sold) increases, the price
p decreases. It makes more sense to think of it as: when the price decreases, the number of items
sold increases. The marginal revenue is the derivative of the revenue, R′(x).
The pro�t function is the revenue minus the costs: P (x) = R(x)− C(x).

• This section is super important and will be an emphasis of Exam 3. Be sure to study all the examples
given in the worksheets and be able to set-up the problems correctly. I will ask problems where all
I want are the primary and secondary equations (i.e. the set-up) but you will not have to solve the
entire problem. This way I can test on many more types of problems.

19



• Section 4.9: Anti-derivatives

• Anti-derivatives:
Given a function f(x) de�ned on an interval I , an anti-derivative of f is a function F (x) (if it
exists) de�ned also on I whose derivative is f(x) for all x in I . That is, we seek to �nd F (x) such
that

F ′(x) = f(x), x ∈ I.

The process of anti-di�erentiation is the inverse of the process of di�erentiation.

• Key Insight: Just like subtraction is the inverse operation of addition and division is the inverse
operation of multiplication, anti-di�erentiation is the inverse operation of di�erentiation.

• Slope Fields:
A geometric interpretation of anti-derivatives is that of slope �elds. Since F ′(x) = f(x) is given,
we know what the slope of F is at every point in the interval I .

• Theorem: All Anti-derivatives:
IF F (x) is an anti-derivative of f(x), THEN all other anti-derivatives of f(x) are of the form: F (x)+
C .

• Guess and Check method for �nding anti-derivatives

• Anti-derivatives Notation:
Given a function f(x) de�ned on an interval I , we denote all the anti-derivatives by F (x) + C or
by using the symbols

∫
f(x)dx. Thus,∫

f(x)dx = F (x) + C

Anti-derivatives are also called inde�nite integrals.

• Theorem: Derivatives and Anti-Derivatives:
The de�nition of an anti-derivative immediately implies that

d

dx

∫
f(x) dx = f(x)

and ∫
d

dx
[f(x)] dx = f(x) + C

• Theorem: A Few Important Anti-Derivative Rules

• ADR 3: Anti-Power Rule: If n 6= −1, then
∫
xn dx =

xn+1

n+ 1
+ C .

• ADR14: Natural Log Rule:
∫

1

x
dx = ln(x) + C .

• ADR 4: Anti-Constant Multiplier Rule:
∫
kf(x) dx = k

∫
f(x) dx.

• ADR 5: Anti-Sum/Di� Rule:
∫

[f(x)± g(x)] dx =

∫
f(x) dx±

∫
g(x) dx.

• ADR: Anti-Exp Rule:
∫
ex dx = ex + C
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• ADR 8: Anti-Sine Rule:
∫

sin(x) dx = − cos(x) + C

• ADR 9: Anti-Cosine Rule:
∫

cos(x) dx = sin(x) + C

• Be able to �nd anti-derivatives using the ADRs.

• Solving ODEs:
Given an ODE of the form, dy

dx
= f(x), where f(x) is a given function, the general solutions are

y(x) =

∫
f(x) dx.

dy

dx
= f(x) =⇒ y(x) =

∫
f(x) dx.

Notice the general solution is actually in�nitely many solutions because of the +C .
A particular solution, is a solution to the ODE that passes through a speci�c point (x0, y0). The
given (x0, y0) are also called initial conditions.

• Galileo’s Discovery:
Terrestrial objects undergoing free-falling motion (no external forces) have the same constant ac-
celeration.
Using units the acceleration is measured to be a(t) = −32 feet per second squared or a(t) = −9.8
meters per second squared for any object undergoing free-falling motion.

• Newton’s Equations of Motion:
If a terrestrial object undergoes free-falling motion, then its equations of motion are:

a(t) = −32

v(t) = −32t+ v0

s(t) = −16t2 + v0t+ s0,

a(t) = −9.8

v(t) = −9.8t+ v0

s(t) = −4.9t2 + v0t+ s0,

where v0 = v(0) is the initial velocity and s0 = s(0) is the initial position.
They are the same equations just in di�erent units.

• Be able to solve equations of motion (SVA) given the acceleration by anti-di�erentiating (twice).

Chapter 5: Integration
• Section 5.1: Area and Distance Problems

• Know the de�nition of area some basic formulas from geometry

• Area Problem using Sums of Rectangles:

Letn be a positive integer, ∆x =
b− a
n

, sub-intervals [xi−1, xi], xi = a+ i∆x for i = 0, 1, 2, . . . , n.

If we select a point x∗i ∈ [xi−1, xi], that is, xi−1 ≤ x∗i ≤ xi, the we can view these as a “random
sample.”
When f is non-negative on the interval [a, b], the area under a curve y = f(x) bounded by the
lines x = a, x = b, and the x-axis is given by
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A = lim
n→∞

An = lim
n→∞

(f(x∗1)∆x+ f(x∗2)∆x+ · · ·+ f(x∗n)∆x)

•When x∗i is the right-endpoint then x∗i = xi. We say it is a right-endpoint approximation to
the area.
•When x∗i is the left-endpoint then x∗i = xi−1. We say it is a right-endpoint approximation to
the area.
•When x∗i is the midpoint of each subinterval then x∗i = (xi−1 + xi)/2. We say it is a midpoint
approximation to the area.
•When the x∗i are chosen so that f(x∗i ) is the minimum value of f on the subintervals, then we say
that An is a lower sum, or lower-estimate.
•When the x∗i are chosen so that f(x∗i ) is the maximum value of f on the subintervals, then we say
that An is a upper sum, or upper-estimate.

• Two important observations:
• When f is INCreasing on the interval (a, b), then the left-endpoint approximations for An are
upper-estimates for the exact area A, and the right-endpoint approximations for An are lower-
estimates for the exact area A.
• When f is DECreasing on the interval (a, b), then the left-endpoint approximations for An are
upper-estimates for the exact area A, and the right-endpoint approximations for An are lower-
estimates for the exact area A.

• Distance Problem using Sums of velocity × time:

Let n be a positive integer, ∆t =
b− a
n

, sub-intervals [ti−1, ti], ti = a+ i∆t for i = 0, 1, 2, . . . , n.

If we select a point t∗i ∈ [ti−1, ti], that is, ti−1 ≤ t∗i ≤ ti, the we can view these as a “random sample.”
When v(t) is non-negative on the interval [a, b], the total distance traveled by a particle with
velocity v(t) from t = a to t = b is given by

D = lim
n→∞

Dn = lim
n→∞

(v(t∗1)∆t+ v(t∗2)∆t+ · · ·+ v(t∗n)∆t)

• The area under the graph of the velocity function between the two line t = a and t = b is equal to
the distance traveled by an object from t = a to t = b.

• Section 5.32 The De�nite Integral

• Sigma Notation for summation:
n∑
i

ai = a1 + a2 + a3 + · · ·+ an.

• Memorize and Know how to use: A Few Basic Summation Formulas

•
n∑

i=1

[cai] = c

n∑
i=1

ai, for a constant c

•
n∑

i=1

[ai ± bi] =
n∑

i=1

ai ±
n∑

i=1

bi

•
n∑

i=j

ai = aj + aj+1 + · · ·+ an, provided that i ≤ j ≤ n.
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• Know how to use the following formulas:

• Sum of a constant:
n∑

i=1

c = c · n, for a constant c

• Sum of the �rst n integers:
n∑

i=1

i =
n(n+ 1)

2

• Sum of the square of the �rst n integers:
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

• Sum of the cube of the �rst n integers:
n∑

i=1

i3 =
n2(n+ 1)2

4

NOTE: YOU DO NOT NEED TO MEMORIZE THESE – they will be provided on the Final Exam.

• DEFINITE INTEGRALS:
Let f be a function de�ned on the closed interval [a, b].

Letn be a positive integer, ∆x =
b− a
n

, sub-intervals [xi−1, xi], xi = a+ i∆x for i = 0, 1, 2, . . . , n.

If we select a point x∗i ∈ [xi−1, xi], that is, xi−1 ≤ x∗i ≤ xi, the we can view these as a “random
sample.”
The de�nite integral of f from x = a to x = b is de�ned to be

∫ b

a
f(x) dx = lim

n→∞

n∑
i=1

f(x∗i )∆x

provided this limit exists and gives the same value for all possible choices of sample points.

•When the de�nite integral exists, we say f is integrable on [a, b].

•When the de�nite integral Does Not Exist, we say f is non-integrable on [a, b].

•We call f the integrand, and a and b the limits of integration with a called the lower limit and
b called the upper limit.

• The process of �nding the de�nite integral is called integration.

• The expression
n∑

i=1

f(x∗i )∆x is called a Riemann Sum.

• IMPORTANT THEOREMS: Area and Distance Problems and De�nite Integrals
• When f(x) is non-negative over [a, b], then the area under the graph of f bounded by the lines
x = a, x = b, and the x-axis is given by:

Area =

∫ b

a
f(x) dx.
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•When v(t) is non-negative over [a, b], then the distance traveled by the object from t = a to t = b
is given by:

Distance =

∫ b

a
v(t) dt.

• Understand what the de�nite integral is when f is non-negative. Called net (or signed) area.

• THEOREM: Continuous functions are integrable

If f is continuous on [a, b], then f is integrable. That is, the de�nite integral,
∫ b

a
f(x) dx, exists and

is equal to a �nite value.

• THEOREM: Properties of the De�nite Integral
•
∫ a

a
f(x) dx = 0.

•
∫ a

b
f(x) dx = −

∫ b

a
f(x) dx, when a < b.

•
∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx, when a < c < b.

• Fundamental Theorem of Calculus
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PRACTICE EXAMS

PRACTICE PROBLEMS FOR EXAM 1
Chapter 1 Review Problems: pages 68-70

• Concept Check: 1-13 all

• True-False Quiz: 1-14 all

• Exercises: 1, 3, 5-8, 11, 14, 19, 20, 23, 25, 26,
27

Chapter 2 Review Problems: pages 165-168

• Concept Check: 1-16 all

• True-False Quiz: 1-26 all

• Exercises: 1–5, 7, 9,13,15,17, 19, 23, 24, 29,
33, 35, 40, 41-43, 45a,b, 47, 48

Answers: Ch 1 R
CC will be uploaded separately (see Sakai)
T/F: FFFTT FFTTF FFFF
Ex For odd answers see back of book.
Even: 6. D = [−2, 2] 8. D = (−∞,∞) 14. Shift y = ln(x) left 1 unit. 20. Let h(x) = x+

√
x, g(x) =

√
x,

f(x) = 1/x. Then F (x) = (f ◦ g ◦ h)(x). 26. (a) x = ln(5) (b) x = e2 (c) x = ln(ln(2)) (d) x = tan(1)
Answers: Ch 2 R
CC will be uploaded separately (see Sakai)
T/F: FFTFT TFFTF TFTFF FTTTF FTFTT F
Ex For odd answers see back of book.
Even: 4. 0 24. Let f(x) = −x2, g(x) = x2 cos(1/x2), h(x) = x2. Because −1 ≤ cos(x) ≤ 1 for all
x, we have −1 ≤ cos(1/x2) ≤ 1 for all x 6= 0. Multiplying by x2 and noting that x2 > 0 for x 6= 0
we have −x2 ≤ x2 cos(1/x2) ≤ x2 for all x 6= 0. Thus, f(x) ≤ g(x) ≤ h(x) for x 6= 0. Because
limx→0(−x2) = 0 and limx→0(x2) = 0, by the Squeeze Theorem, we conclude that limx→0g(x) = 0.
Thus, limx→0 x

2 cos(1/x2) = 0. 40. f(x) = x6 and a = 2. 48. The tangent line of a has positive slope
for x < 0 and negative slope for x > 0 so this matches with the values of graph b. Notice that at x = 0,
the tangent line of graph a is horizontal so it’s slope is zero and the graph of b is zero at 0. Thus a = f
and b = f ′. The graph of b has horizontal tangent lines to the left and the right of the y-axis and at these
values the graph of c is zero so that c is the derivative curve for b. Since b = f ′, c = f ′′.

2. 42.

PRACTICE PROBLEMS FOR EXAM 2
Chapter 3 Review Problems: pages 266-269

• Concept Check: 1-6 all

• True-False Quiz: 1-15 all

• Exercises: 1-10, 13-15,17,21,25,28,30,41, 51,
52, 53 just y′ only, 56-59, 60, 61 just tangent
line, 65, 66, 69, 70, 71, 75, 77, 83, 85, 89, 92,
93, 94, 95, 97, 99

Answers: Ch 3 R
CC will be uploaded separately (see Sakai)
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T/F: TFTTF FFFTF TTTFT
Ex For odd answers see back of book.
Even: 2. y′ = − 1

2x3/2 + 3
5x8/5 or y′ = − 1

2x
√
x

+ 3

5x
5√
x3

. 4. (1+cos(x)) sec2(x)+tan(x) sin(x)
(1+cos(x))2

.

6. y′ = cos−1(x)− x√
1−x2

. 8. dy
dx = y cos(x)−ey

xey−sin(x) . 10. dy
dx = emx(m cos(nx)− n sin(nx)). 14. dy

dx = tan(x).

28. dy
dx = (cos(x))x(ln(cos(x))−x tan(x)). 30. Use log di�! dy

dx = ( (x2+1)4

(2x+1)3(3x−1)5
)( 8x

x2+1
− 6

2x+1 −
15

3x−1).
52. g′′(π/6) =

√
3 − π/12. 56. Use special trig limits. Ans: 1/8. 58. y = −1. 60. y − 1 = −4/5(x − 2).

70. (a) P ′(2) = −2 (b) Q′(2) = −3/8 (c) C ′(2) = 6. 92. (a) C ′(x) = 2 − 0.04x + 0.00021x2 (b)
C ′(100) = 2 − 4 + 2.1 = −0.1 $/unit, This value represents the rate at which costs are increasing as
the hundredth unit is produced, and is the approximate cost of producing the 101st unit. (c) The cost of
producing the 101st item isC(101)−C(100) = 990.10107−990 = $0.10107, slightly larger thanC ′(100).
94. (a) m(t) = Cekt, k = ln(1/2)/5.24, m(20) = 100ek20 ≈ 7.1 mg (b) 1 = 100ekt, t = ln(1/100)/k =
5.24(ln(1/2)/ ln(1/100)).

PRACTICE PROBLEMS FOR EXAM 3
REMARK: The book review problems are not a very good match for what I have in mind for Exam 3. So
it is best to study directly from the worksheets and class notes to get a better idea of the problems I’ll
ask. In particular, for the optimization problems, the online homework and worksheets will be the best
preparation.

Chapter 3 Review Problems: pages 266-269

• Concept Check: 7

• True-False Quiz:

• Exercises: 103(a), 104

Answers: Ch 3 R
CC will be uploaded separately (see Sakai)
Ex For odd answers see back of book.
Even: 104. y = x3−2x2+1 then dy = (3x2−4x)dx. Whenx = 2 and dx = 0.2, dy = [3(2)2−4(2)](0.2) =
0.8.

Chapter 4 Review Problems: pages 358-359

• Concept Check: 1-6, 9, 11

• True-False Quiz: 1-9

• Exercises: 1,5, 15, 19, 21, 23, 27, 45, 59, 65,
67, 69, 71, 73,

Answers: Ch 4 R
CC will be uploaded separately (see Sakai)
Ex For odd answers see back of book.
Even:

PRACTICE PROBLEMS FOR FINAL EXAM
Chapter 5 Review Problems: pages 421–424

• Concept Check: 1, 2, 4, 7,8

• True-False Quiz: 1, 6, 11, 12, 13, 14, 15, 17

• Exercises: 1a, 2 all parts, 5, 7, 8, 9, 11, 13, 15, 45, 58,

Answers: Ch 5 R
CC will be uploaded separately (see Sakai)
Ex For odd answers see back of book.
Even: 2. 8. 58.
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