Summary of Convergence and Divergence Tests for Series

TEST	SERIES	CONVERGENCE OR DIVERGENCE	COMMENTS
<i>n</i> th-term	$\sum a_n$	Diverges if $\lim_{n \to \infty} a_n \neq 0$	Inconclusive if $\lim_{n \to \infty} a_n = 0$
Geometric Series	$\sum_{n=1}^{\infty} ar^{n-1}$	(i) Converges with sum $S = \frac{a}{1-r}$ if $ r < 1$ (ii) Diverges if $ r \ge 1$	Useful for comparison tests if the nth term a_n of a series is similar to ar^{n-1}
p-series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	(i) Converges if $p > 1$ (ii) Diverges if $p \le 1$	Useful for comparison tests if the nth term a_n of a series is similar to $\frac{1}{n^p}$
Integral	$\sum_{\substack{n=1\\a_n=f(n)}}^{\infty} a_n$	(i) Converges if $\int_{1}^{\infty} f(x) dx$ converges (ii) Diverges if $\int_{1}^{\infty} f(x) dx$ diverges	The function f obtained from $a_n = f(n)$ must be continuous, positive, decreasing, and readily integrable.
Comparison	$\sum_{a_n} a_n$, $\sum_n b_n$ $a_n > 0$, $b_n > 0$	 (i) If ∑ b_n converges and a_n ≤ b_n for every n, then ∑ a_n converges. (ii) If ∑ b_n diverges and a_n ≥ b_n for every n, then ∑ a_n diverges. (iii) If lim (^{a_n}/_{b_n}) = c > 0, then both series converge or both diverge. 	The comparison series $\sum b_n$ is often a geometric series or a p-series. To find b_n in (iii), consider only the terms of a_n that have the greatest effect on the magnitude.
Ratio	$\sum a_n$	If $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L \ (or \ \infty)$, the series (i) Converges (absolutely) if $L < 1$ (ii) Diverges if $L > 1 \ (or \ \infty)$	Inconclusive if $L = 1$ Useful if a_n involves factorials or nth powers If $a_n > 0$ for every n , the absolute value sign may be disregarded.
Root	$\sum a_n$	If $\lim_{n \to \infty} \sqrt[n]{ a_n } = L \ (or \infty)$, the series (i) Converges (absolutely) if $L < 1$ (ii) Diverges if $L > 1 \ (or \infty)$	Inconclusive if $L = 1$ Useful if a_n involves nth powers If $a_n > 0$ for every n , the absolute value sign may be disregarded.
Alternating Series	$\sum_{a_n>0}^{(-1)^n a_n}$	Converges if $a_k \ge a_{k+1}$ for every k and $\lim_{n \to \infty} a_n = 0$	Applicable only to an alternating series
$\sum a_n $	$\sum a_n$	If $\sum a_n $ converges, then $\sum a_n$ converges.	Useful for series that contain both positive and negative terms