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« Final Exam info

« Exam 1, 2 and 3 topics covered list

« Notes on Chapters: 12, 13, 14, 15, and 16.1-16.4 and bonus material on 16.5-16.9
. Exam 1, 2, 3, and Final Exam Practice Problems

« Exam 1, 2, 3, and Final Exam Practice Problems Answers to even problems

What to expect on Exam day (for Exams 1 and 2)

« T'll arrive to our classroom before 12:50 pm and we’ll have a Q&A where I'll answer any questions
you have until 1:25 pm. Then you’ll bring all of your belongings to the front of the classroom and
take Exam 1 from 1:30-2:30pm.

+ So, the length of time is 60 minutes. Though I'll usually allow an extra 5-10 minutes if you want/need
the time.

+ You cannot use any calculator or electronic devise during the exam.

+ Once the exam starts you may not use the restroom. So please use the restroom before the exam
starts or during the first 30 minutes.

+ Expect a mix of True/False, Multiple Choice, and Free Response questions. See the Practice Problems
below.

What to expect for Exam 3

« This will be a take-home exam. Details and Exam information will be posted on Sakai.

What to expect for Final Exam

+ Monday, May 7 from 2-5 pm in our usual classroom.

o I'll arrive to our classroom before 1:30 pm and we’ll have a Q&A where I'll answer any questions
you have until 1:55 pm. Then you’ll bring all of your belongings to the front of the classroom and
take the Final Exam from 2-5pm.



+ You cannot use any calculator or electronic devise during the exam.

« Students will get one bathroom break, must turn in their exam while they leave the room, and only
one student at a time.

« Expect a mix of True/False, Multiple Choice, and Free Response questions. See the Practice Problems
below.

« Itis cumulative exam, so everything we covered is fair game. We’ll have a slight focus on Chapter 16
material, especially from 16.3 and 16.4, accounting for roughly 40% of the exam. The remaining 60%
will be material from Chapter 12, 13, 14, and 15 with a roughly 50-50 split between differentiation
and integration.

Material Covered

EXAM 1: Monday, February 12

Chapter 12: Vectors and the 12.6 - Cylinders and Quadric Surfaces
Geometry of Space

12.1 - Three-Dimensional Coordinate Systems Chapter 13: Vectors Functions

12.2 - Vectors 13.1 - Vector Functions and Space Curves
12.3 - The Dot Products 13.2 - Derivatives and Integrals of
12.4 - The Cross Products Vector Functions

12.5 - Equations of Lines and Planes

EXAM 2: March 19

Exam 1 Material 14.2 - Limits and Continuity
14.3 - Partial Derivatives
Chapter 13: Vectors Functions 14.4 - Tangent Planes and Linear Approximations

14.5 - The Chain Rule

14.6 - Directional Derivatives and the
Gradient Vector

14.7 - Maximum and Minimum Values

13.3 - Arc Length and Curvature
13.4 - Motion in Space: Velocity and Acceleration

Chapter 14: Partial Derivatives

14.1 - Functions of Several Variables

EXAM 3: due April 30 by 5 pm (Take-home)

Exam 1 & 2 Material 15.4 - Applications of Double Integrals
15.6 - Triple Integrals
15.7 - Triple Integrals in Cylindrical Coordinates

Chapter 14: Partial Derivatives ) ) ] )
15.8 - Triple Integrals in Spherical Coordinates

14.8 - Lagrange Multipliers

Chapter 15: Multiple Integrals Chapter 18: Vector Calculus
15.1 - Double Integrals over Rectangles 16.1 - Vector Fields
15.2 - Double Integrals over General Regions 16.2 - Line Integrals

15.3 - Double Integrals in Polar Coordinates



FINAL EXAM on Monday, May 7 from 2-5 pm

Everything we covered from Chapters 12, 13, 14, 15, and 16 up to 16.4.

Chapter 12: Vectors and the Geometry of Space

+ The length of a vector and the relationship to distances between points

« Addition, subtraction, and scalar multiplication of vectors, together with the geometric interpreta-
tions of these operations

« Basic properties of vector operations

« [The dot product;: v - W = viw; + vows + v3ws

« Basic algebraic properties

+ The geometric meaning of the dot product in terms of lengths and angles: in particular the formula

—

0w = || 0] [|@]] cos(6)

« Angle formula: 6 = cos™ ! <vw>
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« Vector projections: geometric meaning and formulas.

Projection of b onto @: compz(b) = th1s is just a length.

There is also the vector version that pomts along the direction of a:

—;

. . . &b
projz(b) = B ”2 aor projz(b) = -—d.

j=at}

+ The cross product: definition and basic properties

« The geometric meaning of the cross product: in particular ¥ X & is orthogonal to ¢ and w, with
magnitude |7 x @|| = ||¢/]| ||| sin(@), and direction given by the right-hand rule

« || x || is the area of the parallelogram spanned by ¢ and 0.
« 1 - (U x W) is the volume of the parallelopiped spanned by , ¥ and 0.

« Tests for Orthogonality:
e ¥ and W are orthogonal <= v =0
e ¢ and w0 are parallel <= v x W =10
e i, U and w are coplanar <= @ - (¥ x

w) =0

« LINES AND PLANES WITH VECTORS

« Intrinsic description (vectors) vs. Extrinsic description (scalar equations)

« Lines: passage between a vector equation, parametric equations, and symmetric equations

« Vector Eq of a line: m (in book 7y = 15)

+ line segment between two points



« Planes: passage between a vector description (a point together with two direction vectors) and a
scalar equation

—

« Vector Eq of a plane: [17- ¢ = 0] (in book 77— 7y = ¥ = ( — x0,y — Yo, 2 — 20))

+ Distance from point P and a plane P : axz + by +cz +d = 0O: ‘D = compﬁ(P_Q) ‘, where () is any
. _ azx1+byi+czi+d
point on P, or D = RV/ esxe=an

« Using vector algebra to solve geometric problems about lines and planes—it is essential that you
think geometrically and try to save the number crunching in components for the last moment.

« GEOMETRY OF SURFACES
« Cylinders: know how to spot a “free (missing) variable” to help sketch

« QUADRIC SURFACES: Spheres, Cones, Ellipsoids, Elliptic Paraboloid, Hyperboloid of 1-sheet, Hy-
perboloid of 2-sheets, Hyperbolic Paraboloid

+ Be able to recognize the above either by memorizing their equations or by using intersection with
planes as done in class

Chapter 13: Vectors Functions
o [Functions f: X — Y

where set X is domain (=set of inputs), Y is the range (=set of outputs)

« We'll only worry about: withn,m > 1

« n.=m = 1: real-valued function of a real variable f : R — R
x € R,y € R, usually written y = f(z)
Graph is a curve in the plane

« When Y = R: scalar-valued functions

« When X = R and Y = R?: plane curves or vector-valued functions

t € R, f(t) € R? usually written f(t) = 7(t) = (f(t),9(t)) = f(t)i + g(t)7
Graph is a plane curve moving throughout 2D plane

« When X = R and Y = R?: space curves or vector-valued functions X
t € R, f(t) € R? usually written f(t) = 7(t) = (f(t),g(t), h(t)) = f(t)i + g(t)j + h(t)k
Graph is a space curve moving throughout 3D plane

« Line segment from a point P to Q: 6(t) = (1 — t)P +tQ, t € [0, 1]
« Sketching space curves, vector-valued functions
« Space Curves/VVFs: limits, continuity, differentiation rules (Theorem 3, p. 858), definite integral

+ Example 4 on p. 858, know this proof

b
« Arclength = length of a curve; |L = / |7 (t)|dt

b
Alternatively, you can use: L = / V)2 + (¢'(1)2 + (W(t))2dt

(1)
|7 ()]

« unit tangent vector: T'(t) =



T (¢ A=/
Curvature = bending from flat; x(t) = | _,/Etiﬁ = ’T_,/?t;J
T T

TNB Frame: 7', N, B all unit length and mutually orthogonal to each other. Hence, making a little
“frame”:

. _T'(t)an S — T«
N(t)_mt)’ d B(t) = T(t) x N(t)

Given a space curve 7(t) = (z(t),y(t), z(t)), we call 7(¢) the position vector-valued function. The
velocity vector-valued function is the derivative of the position function:#(¢) = 7/ (¢) and it’s speed
is the length of the velocity vector: |0(¢)|. It’s acceleration VVF is the derivative of the velocity:
ag) =v'(t) =7"(¢).

Newton’s Second Law: F' = ma.

Vector Differential Equations; initial conditions

Chapter 14: Partial Derivatives

Functions: withn,m > 1

Now, we will have n > 1: functions of several variables!

n = 2, m = 1: Scalar-Valued function of TWO variables

(z,y) €R? fz,y) €R

Graph is [ = [(z.4]]

Graph is a surface in space

Domain D is a subset of the plane R?

Level Curves: f(x,y) = k for k fixed are curves in plane with height fixed—“isotherms”

n > 3, m = 1: SVFs of three or more variables
(r1,22,23,...,2) € R, f(x1, 22, 23,...,2,) €ER
Graph: none! Instead need to use other techniques
Level Surfaces: f(x1,x9,x3,...,2,) = k for k fixed

Limits: ( I)mr% ) f(z,y) = L] means: “as (z,y) approaches (a,b) along any possible path, the
x,y)—(a,

values f(x,y) approach the unique value L

Know how to compute limits and to show when limits DNE by using different paths

Continuity:[ lim  f(z,y) = f(a,b)
(z,y)—(a,b)

Partial Derivatives: Given f : R? — R, f(z,%)

0 h,b) — b

8—;2(@, b) = ill1tn% flath, })L f(a,b) the partial derivative of f with respect to x at the point (a, b)
b+ h)— b

g‘;(a, b) = }thrr(l) fla,b+ })L f(a,b) the partial derivative of f with respect to y at the point (a, b)

BUT: computing them is easy! Just: “pretend the other variable is constant”
Know the geometry of the partial derivatives as slopes of the appropriate tangent lines
Implicit Diff with partial derivatives

2
Higher partial derivatives: f, = %, etc



Clairaut’s Theorem: equality of mixed partials is when the second-order partial derivatives are con-
tinuous functions

Tangent Planes: Given f : R? — R, f(z,y)
The tangent plane of f at P = (a, b, f(a,b)) is[z = f(a,b) + fu(a,b) - (x —a) + fy(a,b) - (y — )]

Know how this formula was derived in class with 7 = (— f, — f,, 1)

Linearization: [L(z,y) = f(a,b) + fo(a,b) - (x —a) + f,(a,b) - (y — b)]
When (z,y) is close to (a, b), then f(z,y) ~ L(x,y)-that is the linearization is a good approxima-
tion of f near P

f is differentiable at P = (a, b, f(a, b)) if the tangent plane exists at P.
Notice: this is stronger than simply requiring that the partial derivatives f, and f, exist at P.
Theorem: if f, and f, are continuous, then f is differentiable

Differentials:

dx and dy can be any real numbers (usually, dz = Ax = 29 — 21, dy = Ay = yo — y1)

Actual change in z = f(x,y) from P = (z1,y1) to Q = (x2,y2) is:[Az = 29 — 21 = f(Q) — f(P)]
Approximate change is given by the differential dz: |[dz = f;(a,b) - dz + f,(a,b) - dy]

dz sometimes called the total differential

Works for higher-dimensions too: dz = fy, - dz1 + fy, - dxg + -+ + fy, - dxy,

Chain Rule:
Basic chain rule: f : R® — R with f(x,92), g(t) : R — R3 with g(¢) = (x(t), y(t), 2(t)), then the
derivative of (f o g)(t) : R — R is

d _3fdx df dy Of dz
@f(a:(t),y( ) 2( ))_%E awdt T oz at

Tree diagrams are helpful for book-keeping:

z
9z 0z
ox Jy

L Y
oz ox 9y Oy
0s / \81& 0s / \8t
S t s t

General Chain Rule:
Assume u : R" — R is a SVF of n variables written u(z1, z2,...,z,) and each z; : R™ — Risa
SVF of m variables written x;(t1,t2, . .., t) foreachi =1,2,...n. Then

ou ou 0x ou Oxo _ ou Oz,

o, ~ om0, " omot, T o, 01,

Notice: in the above formula the ¢; is the same, but we take all possible partial derivatives of u with
respect to the x;’s as ¢ ranges from 1 to n. The tree diagram is helpful:
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« Gradient Vector: Given f(x,y) or f(x,y, z) the gradient collects all the partial derivatives into a
vector:
Vi(z,y) = (fo(z,9), fy(:E, y))or Vf(x,y,2) = <fa¢($7 Y, 2), fy(xa Y, 2), f2(2,y, Z)>
Common notations: V f = grad(f) = del(f) = 9(f)
This generalizes easily to higher dimensions

« Directional Derivative:
The directional derivative of f in the direction of the unit vector @ = (uy, ua) (or @ = (uy, uz, us)):
‘Dﬁ(f) - fx(au b) cup fy(aa b) ’ UQ‘OI"Dﬁ(f) — fl(av b) C) cup + fy(av b) C) “ug + fz(au bv C) : u3‘
This generalizes easily to higher dimensions. We can write it compactly for all dimensions as:

Da(f) = V() -4l

« Maximizing the Directional derivative:
the maximum of Dz(f) at a point P = (a,b) is given by |V f(a, b)| and occurs when @ is in the
same direction as V f(a, b).
the minimum of Dz(f) at a point P = (a, b) is given by —|V f(a, b)| and occurs when 1 is in the
opposite direction as V f(a, b).

« Level Surfaces, Tangent Planes, and Gradients
Given a function F' : R? — R. Consider it’s level surface S : F(x,y, z) = k. Then the gradient of
F is normal to the tangent plane at a point P = (a, b, ¢) on the surface S (as long as it’s not the zero

vector), that is
(VE)(a,b,c,) -7 (tg) =0

for any space curve 7(¢) that travels inside the surface S and passes through P at .
We can use this to find the equation of the tangent plane: (VF')(a,b,c) - (z —a,y — b,z — ¢) = 0.

BONUS MATERIAL

How is this related to the derivation of the tangent plane we learned earlier?

Previously we started with z = f(z,y) a function of two variables and its graph was a surface S.
We can view it as a function of three variables F'(z,y, 2) = z — f(z, y) and the surface S is the level
surface of F' with k = 0.

From the gradient equation for F'(z,y,z) = z — f(x,y):

VEF(,.9) = (g1 (2~ fa). 5~ Faw)

- <_f27($7y)> _fy(way)v 1>

(e fa )

This was exactly what we got in section 14.4 where we used 77 = f, X ﬁ, = (1,0, fz) x (0,1, fy).

« MAX & MIN VALUES: know the definitions of a local min/local max and global min/global max
VALUES of a function f.
Know the distinction between the min/max value of f and the point where it occurs.



Critical Points: P = (a, b) is a critical point of f if V f(a,b) = 0 or DNE. That is, if f;(a,b) = 0 and
fy(a,b) = 0; or if one of f, or f, DNE.

“Fermat’s Theoem:” If f has a local min/max at P and f is differentiable at P, then P is a critical
point of f

C? functions = second-order partial derivatives exist and are continuous

Know: Let A = f..(a,b), C = fyy(a,b), B = fyy(a,b).
Let|D = AC — B?|called the discriminant.

SDT: Second Derivative Test:
Assume: f is C? and P = (a, b) is a critical point of f.

Second Derivative Test

eif D>0and A >0 |ifD>0and A <0 iftD <0 ifD=0

then then then then

f(a,b) is alocal f(a,b) is alocal f(a,b) is NOT an extremum | test fails

MIN value MAX value (saddle point) (anything
can happen)

Note: when D > 0, then AC — B2 > 0 so AC > B? > 0. This implies that both A and C have the
same sign. So either both A > 0 and C' > 0 or both A < 0 and C' < 0. This is why the bending in
x and y directions make sense as in the figures above.

Closed Subsets in the plane: a bounded set that contains all of its boundary points (the analogy of a
closed interval in the line)

Extreme Value Theorem: If f : R? — R is continous and D is a closed subset of the plane, then f
attains both an absolute minimum and absolute maximum value at points inside D.

How to find Absolute Min/Max Values on a closed set D:

Break up D into two parts, I = inside part (open set) of D, B = boundary curve

Step 1: find critical points in I=inside D

Step 2: find the points where f has extreme values in B

To do this: parametrize the boundary curve (in pieces if necessary) with (x(¢),y(t)), then find the
extra of the one-variable function f(t) = f(z(t),y(t)) using Calc 1 techniques.

Step 3: Evaluate f at points from Steps 1 and 2 and select the largest and smallest values.

How to find Extrema on a closed set using Lagrange Multipliers:
Let f(z,y,2) and g(x,y, z) be functions with continuous partial derivatives.
To find the extremum of f(x,y, z) subject to the constraint g(x,y, z) = ¢, solve the equations:

Vf=AVyg
g=c

for x,y, z, and \. That is, we solve: f, = Ags, fy = Agy, f- = Ag.,and g = c.



Chapter 15: Multiple Integrals

Summary:

« dA=infinitesimal unit of area:
e Cartesian Coordinates in the plane: dA = dxdy
e Polar Coordinates in the plane: dA = rdrdf

+ dV =infinitesimal unit of volume:
e Cartesian Coordinates in space: dV = dxdydz
e Cylindrical Coordinates in space: dV = rdrdfdz
e Spherical Coordinates in space: dV = p? sin(¢) dpdfd¢

More details:

+ Definition of a double integral as a limit

« Double Integrals of functions f(x,y) over rectangles R = [a, b] X [c, d] as iterated integrals

« Geometric Interpretation of / / f(x,y) dA: Volume under the graph of the surface z = f(x,y)
D
(when f(x,y) > 0) lying above the rectangle R in the plane.

+ Fubini’s Theorem:
When integrating over a rectangle, you can do the integrals in any order!

//Rf«c,y)dA—/ab [/jf(zc,y)dy} da:—/cd [/ff(ay)d:c} day

« Area a domain D in the plane: Area(D) = // 1dA.
D

« Double Integrals over Elementary Domains D in the plane:
e DisTypel:

a<x<b b [ g2(x)
: - A=
Y {gl<x>3ysg2<x> - [, aa= _/gm f(”““’y)dy] o

e D is Type II:

C S y S d d B hQ(y)
: A
D {h1<y) <z < ha(y) ? //Dfd /C _/hl(y) f(z,y) dx] dy

« FACT: if f is continuous on the elementary region D, then the double integral over D exists.

+ Be able to compute double integrals of Type I or II fully. But also be able to set-up the correct inte-
grals. Given an integral, be able to read and sketch the domain and switch the order of integration.

Double Integrals in Polar Coordinates:

Given cartesian coordinates (z,y), the equations for polar coordinates are: 7> = 22 4 y2 and 0 =
tan~!(y/x).

Given polar coordinates (7, #), the equations for cartesian coordinates are: x = rcos(f) and y =
rsin(6).

The infinitesimal unit of area is:



e When D can be easily described by polar coordinates as a sector (circles, quarter circles, annuli,

ete):
B rb
D;{Zigibﬁ — [ swwaa= [" [ 1o, rsinon raras

b B
or / / f(rcos(@),rsin(@)) rdf dr by Fubini’s Theorem.

o When'D is a more general region in PC:
When the “wobbly sector” i.e. 7 = hi(#) is a lower bound for r and = hg(0) is an upper bound
for r:

fa<o<p 8 ® _
. {mw) <r<hyo) [ sia= | /W) J(r cos(0), rsin(6)) rdr do

Be able to find the area of regions described using PC
Triple Integrals of f(z,y, z) over boxes B = [a,b] X [c,d] X [r, s] using iterated integrals

Geometric Interpretation of / / / f(z,y, z) dV: We can’t visualize this! The units of this integral
E

are 4-dimensional! It sums up the values of the function f(z,y, z) times the infinitesimal volume
dV as (z,y, z) ranges over the solid F in space.

Best way to think of it: 7'(x, y, 2) is temperature at point (x, y, z) in the oven B then /// T(x,y,2z)dV
B

is the total temperature inside B.

Fubini’s Theorem:
When integrating over a box, you can do the integrals in any order!

//Bf(:r:,y,z)dV:/ab [/Cd [/Tsf(x,y,z)dz} dy] dx:/ab [/TS [/Cdf(m,y,z)dy] dz] dx

and equal to any of the other 4 possibilities.

Volume of a region E in space: Vol(E / / / 1dV.

Triple Integrals over Elementary Regions E in space:
o IVis Type I:

S O || LS AT AT

then depending on whether D is Type I or Type II:

b | rgzz) ug(z,y)
// [/ f(z,y,2)dz| dA = / [/ [/ flz,y,z2) dz] dy] dx (D is Type I)
,y) a |Joi(x) [Ju(zy)
uz(z d ha(y) ug(z,y)
// [/ f(z,y,2)dz| dA = / [/ [/ f(z,y,z) dz] dw] dy (D is Type II)
(2,y) c h1(y) u1(z,y)

o [Jis Type II:

el S = HL = [ e

10
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then depending on whether D is Type I or Type II:

d 92(y) u2(y,z)
// [/ (z,y,2)dx| dA = / [/ [/ f(z,y,z) dx] dz] dy (D is Type I)
(v, Z) c [Ja(y) [Jui(y2)
u2(y,z s ha(z) u2(y,z)
// [/ flz,y,z)dz| dA = / [/ [/ f(z,y,z) dx] dy] dz (D is Type II)
(4:2) o [Vhi(z)  [Jua(y2)

o [V is Type III:

B Ly = ML= [0 i

then depending on whether D is Type I or Type II:

uz(z,2) b| ro2(z) ug(z,2)

// / f(2,y,2)dy dA—/ / / f(z,y,2)dy| dz| dz (D is TypeI)
u1l a g1(x) w1 (z,2)
u2(x,z) s ha(z) u2(x,z)

// / f(z,y,2)dy dA—/ / / f(z,y,2)dy| dz| dz (D is Type II)
u1 r hi(z) wy (z,2)

Important examples are to compute the volume of spheres using either Type I, II, or IIl triple integrals.

dA

Triple Integrals in Cylindrical Coordinates:

Cylindrical coordinates: (r, 6, z)

Given cartesian coordinates (z,y, z), the equations for cylindrical coordinates are: 2+ y2 = r2,
0 = tan~!(y/z),and z = 2.

Given cylindrical coordinates (7, 0, z), the equations for cartesian coordinates are: x = 7 cos(),
y =rsin(f), and z = z.

The infinitesimal unit of volume is: [dV = rdr df dz

e When E can be easily described by cylindrical coordinates as a cylinder (or part of):

a<r<b o |
oy ffj;f :>///Ef(x,y,z)dV:/r/a/af(rcos(@),rsm(@),z)rdrdé?dz

or in any of the other 5 possible orders of dr, df, dz by Fubini’s Theorem.

e When I is a more general region in CC:

Besides cylinders know the equation of cone in CC: z = 7. So you can describe regions like an “ice
cream cone’

Triple Integrals in Spherical Coordinates:

Spherical coordinates: (p, 8, ¢)

Given cartesian coordinates (z, y, z), the equations for Spherical coordinates are: p? = 22 +52 + 22,

0 = tan~!(y/z), and and ¢ = cos~1(2/p).

Given Spherical coordinates (p, 6, ¢), the equations for cartesian coordinates are: z = (psin(¢)) cos(f),
= (psin(¢)) sin(0), and z = p cos(¢).

The infinitesimal unit of volume is: [dV = p*sin(¢) dp df d¢|

e When FE can be easily described by Spherical coordinates as a sphere (or part of):

11



a<p<b
E:qa<0<g =
0< o<~

// F (@, 2)dV = / / /fpsm( ) cos(9), psin(@) sin(6), pcos(6)) p? sin(9)dp do do

or in any of the other 5 possible orders of dp, df, d¢ by Fubini’s Theorem.

e When F is a more general region in SC:

Besides spheres know the equation of cone in CC: ¢ =constant. So you can describe regions like an
“ice cream cone”

Chapter 16: Vector Calculus

« Vector Fields: a vector field F gives a vector (in plane or in space) at every point.
More generally, vector fields are functions: ' : R” — R"

e VFs in the Plane:

F:R? - R2, F(z,y) = (P(z,y),Q(z,y)) where P,Q : R — R are SVFs.

e VFs in Space:

F:R3 > R3, ﬁ(x, y,2) = (P(z,y, 2),Q(x,y, 2), R(x,y, 2)) where P,Q, R : R® — R are SVFs.

« Visualization of a vector field as a “field of arrows” and interpretation as a force field, or fluid flow

Important examples: (a) “Explosion” F' (xz,y) = (x,y); (b) “Implosion” F (xz,y) = —(z,y); (c) “Cir-
culation” counter-clockwise F'(x,y) = (—y, x); (c) “Circulation” clockwise F'(z,y) = (y, —z)

« Gradient Vector Fields: [V f = (fz, [y, [2)]

« Recall: curves in the plane and in space
[7(#) = {(t). y(£). 2(#)}] and |ds = ['(t)] dt]
since ds = \/(2/(1))? + (/(1))? + (2 (t)) dtf |7 (t)]dt.

Infinitesimal unit of vector arclength: di = T'(t)ds.

But this is a pain to compute, so instead we use: |di’ = 7 (t) dt

- LINE INTEGRAL OF F' ALONG A CURVE C: [, F - dF.
General: / F.di = / F t)dt| (Notice: this uses the DOT product!)

In the plane: / (P,Q) - dr = / Pdx + Qdy

Notice: F' = (P, Q) and dr = _”( )dt (2'(t),y'(t))dt, so computing the dot product gives:
F-dr = (P,Q) - (@'(t),y (t))dt = Pa'(t)dt + Qy'(t)dt = Pdx + Qdy
since [dx = 2/(t)dt]and [dy = ' (¢)dt]

In space: / (P,Q,R) -dr = / Pdx + Qdy + Rdz
C C

+ Geometric Meaning of a line integral of a vector field along a closed curve C': Circulation of F along
the curve C'

« Know how to parametrize curves: line segments, circles, ellipses, parabolas, squares, triangles, etc

« Properties of curves: orientation, C; U Cy, —C' etc

12



« Properties of Line integrals: f01U02 F= fC1 F+ f02 F and f—Cﬁ = — fC F.

« DEFINITIONS/TERMINOLOGY:
Definition of F path independent
Curves C': Closed, Simple
Domains D: Open, connected, simply connected
NOTATION: is the notation for the boundary curve of D. It comes with orientation
defined by: positive when traveling along the boundary curve, the domain D is on your left side.
Negative when traveling along the boundary curve, the domain D is on your right side.

« CONSERVATIVE VECTOR FIELDS
Definition of F' conservative

F conservative <> 7{ F = 0 for all closed loops
C

F conservative <= it is the gradient of some function, ie F=vVf
Note: f is called a Potential function. Know how to find f if given a conservative VF

THM (Fundamental Thm of Line Integrals): / Vf(F)-di = f(B) — f(A)
C

(where C' a curve from A to B)
(Fundamental Theorem of Conservative VFs):

Let D be a simply connected domain in the plane. Then

~ 0 oP
F = (P, Q) is conservative on D <= oQ = —lonD
ox oy

« GREEN’S THEOREM
Assumptions needed:
e D simply connected domain in the plane (=open+connected+no holes or punctures)
e 0D = (' the boundary curve is a simple, closed curve oriented positive sense (ie CCW)
o = (P, Q) with P, @) continuous partial derivatives inside D and on 0D

THEN Pdz + Qdy = // <8Q — 8P> dA
aD p\9dz Jy

WARNING: F must be defined and differentiable inside D for you to apply Green’s Theorem

« Scalar Curl: S.Curl(ﬁ) = %—g - %

Meaning; the infinitesimal circulation of F' at the point (z, 7))

« Vector Form of Green’s Theorem: f F(7) - dif = // S.Curl(F) dA|
ap D

BONUS: GRADIENT OPERATOR, CURL, & DIVERGENCE

« Del Operators: V = <%, 8%> in2Dand V = <8%’ 8%’ %) in 3D

« CURL of F:[Curl(F) = V x F|only for 3D F = (P, Q, R)

—

Curl(ﬁ):VXF: :<Ry_Qz7PZ_R$7Q$_Py>

NN
(Q;SJ‘Q'J%>
= Fle =

NOTE: Curl(F) is clearly a vector!
Geometric Meaning: the circulation at a point through a plane orthogonal to Curl(F’)

13



« DIVERGENCE of F:|div(F) = V - F|
div(ﬁ):v'ﬁ <dady> (P,Q) = %4_87@
div(F) =V - F=(2,2.2). <PQ>—dx+dy+

Geometric Meaning: the contribution of F in the direction of the “explosion vector field” at a point.
This is termed “flux” of the vector field.

BONUS: INTEGRATION OVER SURFACES

« Recall Surfaces in space
you can define a surface via a function f : R? — R with z = f(z,%)
you can define a surface implicitly via a function f : R? — R with f(z,y,2) = ¢

« For simplicity, we only study integrals over surfaces defined as z = f(x,y) over a domain D in the
plane. The domain D is the range of values for z and y (think back to double and triple integrals
from previous chapters)

« Given a surface S : z = f(x,y)
Infinitesimal piece of surface area: dA = /1 + (f;)% + (f,)? dzdy
Normal vector to S at a point: 77 = (— f,, — f,, 1) (outward pointing)

Recall this comes from: 77 = f, x ﬁ = (1,0, fz) x (0,1, f))
ﬁ < fil?a fy7 >

Unit Normal: n = ——
B V1+ + (fy)?

Oriented infinitesimal area: dA = ndA = %dﬁl = nidxdy so dA = fidzd

OR|dA = (—fu, — [y, 1) dady]

- SURFACE INTEGRAL OF & THROUGH S: [ F - dA.

General: /Lﬁ'djz//Dﬁ(xay)'ﬁdxdy
//Sﬁ'dg_ //D F(w,y) - (= fos = fy 1) dady

Alternate Form: // (P,Q,R) - dA = // —Pfydxr — Qf,dy+ RdZ
S D

Geometric Meaning: “Flux” of F across/through the surface S

BONUS: STOKE’S THEOREM

« STOKE’S THEOREM
Assumptions needed:
e D and 0D are planar domain and boundary curve that satisfy assumptions of Green’s Theorem
e S and 0S is a surface in space of the form z = f(z,y) over the domain D and f(9D) = 95 (this
just says that the function f evaluated over the boundary curve in the plane gives the boundary
curve 0SS of the surface S in space)
e orientation 0S is oriented in the positive sense (the surface is always on your left as you walk
around the boundary)
e orientation S is oriented in the positive sense (outward pointing normal vector)

THEN 7{ F(7) - dF = / / Curl(F) - dA
as S

14



Equivalently: f B(F) - dif = // (V x F)-dA
as S

Or:| ¢ P+ Qay+ Bz = [[ ~f(Ry~ @)~ £ (P2~ Bo) +(Qu — P,) dody
as S

BONUS: FLUX and DIVERGENCE

- FLUX of F ACCROSS C" / & - fds.
C
Geometric meaning: the contribution of F' across the curve C'

« Formula for nds:
e parametrize C' with 7(t) = (z(t), y(t))

de\? | (dy\®
e ds=infinitesimal piece of arclength of the curve C: ds = \/ <$> + <y> dt

dt dt
e 7i = normal vector: outward pointing vector that is orthogonal to the tangent vector ()
. <dy dx>
e N =(—,——
dt’ dt
e 7, = unit normal vector: 1 = ﬁ = <7’ _E> 5
1
dz )2 d
V@) + (%)
dy dx
All of th imply to: |nds = (—, ——)dt
e All of these simply to: |nds <dt’ dt>

« Alternate form of flux using F'(z,y) = (P, Q): / F - hds = / —Qdx + Pdy.

« GAUSS’ DIVERGENCE THEOREM in the plane: / Fads = / (V- F)dady

. GAUSS’ DIVERGENCE THEOREM in space: / / $-dA = / / / (V- ®) dedydz
OF E

where F is a solid region in space and OF is the surface Wthh is the boundary of £

Note: div(F) = V- F'= (5. 5. 52) - (P.Q.R) = 35 + G5 + 5.

PRACTICE EXAMS

PRACTICE PROBLEMS FOR EXAM 1

Chapter 12 Review Problems: pages 841-843 Chapter 13 Review Problems: pages 881-883
« Concept Check: 1-19 all « Concept Check: 1-5 all
« True-False Quiz: 1-22 all  True-False Quiz: 1-6 all, 11, 12
o Exercises: 1, 3-7, 11, 12, 15-21, 26-34 o Exercises: 1,2, 3,5

Answers: Ch 12 R

CC will be uploaded separately (see Sakai)
T/F: FFFFT FTTTT TFTTF FFFFF TT

Ex For odd answers see back of book.
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Even: 4. (a) 11i—4j— l%(b)\/_(c —3i—7j—5k (€) 91+ 157+ 3k, 3v/35 ( f)lS(g)O(h) 331—21j+6k
(i) —1/v6 (j) (=1/6)(i + ] — 2k) (k) cos—l( 1/(2v/21)). 6. £(7i 4 2j — k) /(3v/6). 12. D = (4,3,6) and
W =87J.16.x =1+3t,y =2t,z = —1+1.18. (v — )+4(y—1)—3(z—0) = 0. 20. 62+ 9y — 2z = 26.
26. (@) v + 3y +z = 6 (b) T = L = 2210 (¢) cos ™! (—13/V/319) A 137° so 180° — 137° = 43° (d)
x=2+t,y=—t,z=4+ 2t, 28. plane parallel to yz-plane passing through (3,0, 0).

30.
Answers: Ch 13 R

CC will be uploaded separately (see Sakai)
T/F: TTFTF FFFTT FTTF

Ex For odd answers see back of book.
Even: 2. D = (—1,0) U (0, 2]

32. 34.

PRACTICE PROBLEMS FOR EXAM 2

Chapter 13 Review Problems: pages 881-883 Chapter 14 Review Problems: pages 981-984

. Concept Check: 67,8 « Concept Check: 1-18 all

o True-False Quiz: 1-12 all
» True-False Quiz: 8,10

. Exercises: 1-6, 8-10, 11a,b, 12-17, 19-29, 32-
« Exercises: 6,8,9,11,17-19 38, 42-48, 51-56, 63

Answers: Ch 13 R

CC will be uploaded separately (see Sakai)

T/F:FT

Ex For odd answers see back of book.

Even6 a)(15/80 m2) b))z =1-3t,y =1+2t,z=1t@) -3x—-1)+2y—1)+2 =
= [IVOt+adt = [ Judu/9 = (2/27)(13%/% — 8). 18. velocity = #(t) = (4t,2), speed =

| ( )\ = 2V4t2 + 1, acceleration =d(t) = (4,0). Att =1,7(1) = (—1,2),7(1) = (4,2), a(1l) = (4,0).

Answers: Ch 14 R

CC will be uploaded separately (see Sakai)

T/F: TFFTF FTFFT TF

Ex For odd answers see back of book.

Even: 2. {(z,y) | -1 <2 <1,—v4 — 22 <y < /4 — 22}. 4. A circular paraboloid opening up centered
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]
23

at (0,2,0). 6. 8. (a) f(3,2) ~ 55 (b) f(3,2) < 0 since if we fix y at y = 2 and allow z to vary,
the level curves indicate that the z-values decrease as x increases. (c) Both f,(2,1) and f,(2, 2) are positive,
because if we start from either point and move in the positive y-direction, the contour map indicates that
the path is ascending. But the level curves are closer together in the y-direction at (2, 1) than at (2, 2), so
the path is steeper (the z-values increase more rapidly) at (2, 1) and hence f,(2,1) > f,(2,2). 10. DNE.
Choose two paths. Limit is 0 along the z-axis, but limit is 2/3 along the line y = x. 12. Linearization of T’
at (6,4) is L(z,y) = 80 + 3.5(x — 6) — 3.0(y — 4). So, T'(5,3.8) ~ L(5,3.8) = 77.1°C. 14. gy(u,v) =

2_,,2_ 2_9,2__ N
Wa gv(ua U) o W 16. Gw(xvya Z) o zexz sm(y/z), Gy(x7y7 Z) o (exz/z) COS(y/Z),

G.(z,y,2) = e[zsin(y/z) — (y/2%) cos(y/z)]. 20. 240 = 0, 2y = 2y0 = —2e7Y, 2,y = 4dwe Y. 22.
82 62 82 02 82 N 82 82
g =0, 52 = —rcos(s +2t), G = —4rcos(s + 2t), 559- = g = —sin(r +2t), 55 = 55 =

—2sin(r+2t), v _ 0% g, cos(r+2t). 24. True. 26. (@) z = z+1(b)x =t,y = 0,z = 1—+. 28. (a)

otds — 0sot
2@ —1)+2(y—1)+2(z—1) =0 = t,y = t,z = £. 32. du = ugds +uydt = (oo )ds + (25 ) dt

34. () A = 1bh, dA = Aydb + Apdh = (2)db + (5)dh, max error is dA = (2.5)(0.002) + (6)(0.002) =
0.017m? (notice: conver to same units!) (b) ¢ = Vb2 + h2, dc = cpdb+cpdh = (\/ﬁ)dlﬂr (\/ﬁ)dh,

max error is de = (5/13)(0.002) + (12/13)(0.002) = 0.0026m. 36. 2|01) = 5, |01) = 0. 38.

w _ Owot | Owldu 4 Owdv dw _ Owot | Owdu 4 Owdv Jw _ Owot

Op — Ot Op ou Op v Op® Dq — Ot Oq ou dq v dq* Or — Ot Or
wdu | Owdv dw _ dwdt | dwdu | dw v 0z _ —2my’—yzsin(wyz) 9z _ —2z?—wzsin(wyz)
Guor T v 9s = 9t 0s T ouds T v os ¥ 9 = 2ataysmyz) 0 0y = Sataysm(zys) - 4 (@) By

Theorem 14.6.15, the max value of the directional derivative occurs when  has the same direction as the
gradient vector. (b) It is a minimum when  is in the direction opposite to that of the gradient vector (that
is, @ is in the direction of —V f), since Dz(f) = |V f| cos f has a minimum at § = 7. (c) The directional
derivative is zero when 1 is perpendicular to the gradient vector since then Dz(f) = Vf - 4 = 0 (d) The
directional derivative is half of its maximum value when Dj(f) = |V f| cos 0 = 3|V f| when 6 = /3. 46.
Da(f)(1,2,3) = 25/6. 48. V£(0,1,2) = (2,0, 1), max rate is |V £(0, 1,2)| = v/5. 52. CP: (0,0), (1,1/2),
(0,0) is a saddle point, (1,1/2) is a local min, so f(1,1/2) = —1 is a local min. 54. CP: (0, —2) only, (0, 2)
is alocal min, so f(0, —2) = —2/e is a local min. 56. The absolute max is 2/e and it occurs at (0, £1), the
absolute min is 0 and it occurs at (0, 0).

PRACTICE PROBLEMS FOR EXAM 3
Chapter 14 Review Problems: pages 981-984 Chapter 15 Review Problems: pages 1061-1064
. Concept Check: 19 « Concept Check: 1a-d, 2b-d, 3,7, 9

« True-False Quiz: 1-7, 9
« True-False Quiz: N/A
« Exercises: 3,5, 7,9, 17, 19, 21, 23, 25, 27, 29,

« Exercises: 59, 61 31, 33, 35-38, 40, 47, 48, 53

Answers: Ch 14 R
CC will be uploaded separately (see Sakai)
T/F:FT
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Ex For odd answers see back of book.

Even: N/A

Answers: Ch 15 R

CC will be uploaded separately (see Sakai)

T/F: TFTTT TTF

Ex For odd answers see back of book.

Even: 36. Type I Triple Integral: D is type Il in the zy-plane: 0 <y < 1,y+1 <z <4 —-2y,and 0 <
2z < x?y. Thus, V = fol f;:l?y fOLzy 1dz dx dy = 53/20. 38. Use Cylindrical Coordinates: F: 0 < 6 < 2,
0<r<2and0<z<3—y=3-—rsin(d). Thus, V = fo% f02 ngrsm(e) rdzdrdf = 12m. 40. The
paraboloid and half-cone intersect when 22 412 = /22 + y? or when 22 +y? = lorz?+y% = 0. So, D =
() |22 142 < 1}.50.V = [, [ N dz} QA = [27 (X [T dz dr df — /6. 45. B the solid
hemisphere 22 +y?+ 2% < 4withz > 0.In Spherical coordinates: 0 < p < 2, —7/2 <0 < 7/2,0 < ¢ <
7. We change 32/z2 + y2 + 22 into spherical coordinates (psin(¢) sin(8))?(1/p?)? = p® sin?(¢) sin?(6).

So the integral becomes: [ 13/32 fOQ(p3 sin?(¢) sin?(0))(p? sin(¢)) dp df dp = 647 /9.

PRACTICE PROBLEMS FOR FINAL EXAM
Chapter 16 Review Problems: pages 1148-1150

Note: Starred problems are optional and may show up only as extra credit problems.

« Concept Check: 1, 2, 3a,b, 4, 5, 6, 7, 9%, 10, 14*
o True-False Quiz: 1%, 2%, 4,5, 6

« Exercises: 1a, (b*), 3-15 odd, 16, 17, 18%, 29%, 31*

Answers: Ch 16 R

CC will be uploaded separately (see Sakai)
T/F:1.T.F.2.T.4. T.5.F. 6. F.

Ex For odd answers see back of book.

1 3x
Even: 16. / V 1+ 23dx + 2zydy = // 2y — 0] dA = / / (2y) dydz = 3. 18. Curl(F) = V x
Jo JJD Jo Jo

F = ((0—e"?cos(z)), —(e” " cos(x) —0), (0—e " cos(y))) = (—e ¥ cos(z), —e”* cos(z), —e~* cos(y)),
div(F) =V - F = —e “sin(y) — e Ysin(z) — e “sin(z).
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