

MATH 32: Calculus III SPRING 2018

Notes Dr. Basilio

Updated: 5.1.2018

This document contains:

- Exam day info
- Final Exam info
- Exam 1, 2 and 3 topics covered list
- Notes on Chapters: 12, 13, 14, 15, and 16.1-16.4 and bonus material on 16.5-16.9
- Exam 1, 2, 3, and Final Exam Practice Problems
- Exam 1, 2, 3, and Final Exam Practice Problems Answers to even problems

What to expect on Exam day (for Exams 1 and 2)

- I'll arrive to our classroom before 12:50 pm and we'll have a Q&A where I'll answer any questions you have until 1:25 pm. Then you'll bring all of your belongings to the front of the classroom and take Exam 1 from 1:30-2:30pm.
- So, the length of time is 60 minutes. Though I'll usually allow an extra 5-10 minutes if you want/need the time.
- You cannot use any calculator or electronic devise during the exam.
- Once the exam starts you may not use the restroom. So please use the restroom before the exam starts or during the first 30 minutes.
- Expect a mix of True/False, Multiple Choice, and Free Response questions. See the Practice Problems below.

What to expect for Exam 3

• This will be a take-home exam. Details and Exam information will be posted on Sakai.

What to expect for Final Exam

- Monday, May 7 from 2-5 pm in our usual classroom.
- I'll arrive to our classroom before 1:30 pm and we'll have a Q&A where I'll answer any questions you have until 1:55 pm. Then you'll bring all of your belongings to the front of the classroom and take the Final Exam from 2-5pm.
- You cannot use any calculator or electronic devise during the exam.
- Students will get one bathroom break, must turn in their exam while they leave the room, and only one student at a time.
- Expect a mix of True/False, Multiple Choice, and Free Response questions. See the Practice Problems below.
- It is cumulative exam, so everything we covered is fair game. We'll have a slight focus on Chapter 16 material, especially from 16.3 and 16.4, accounting for roughly 40% of the exam. The remaining 60% will be material from Chapter 12, 13, 14, and 15 with a roughly $50-50$ split between differentiation and integration.

Material Covered

EXAM 1: Monday, February 12

Chapter 12: Vectors and the Geometry of Space

- 12.1 Three-Dimensional Coordinate Systems
- 12.2 Vectors
- 12.3 The Dot Products
- 12.4 The Cross Products
- 12.5 Equations of Lines and Planes

EXAM 2: March 19

Exam 1 Material

Chapter 13: Vectors Functions

- 13.3 Arc Length and Curvature
- 13.4 Motion in Space: Velocity and Acceleration

Chapter 14: Partial Derivatives

14.1 - Functions of Several Variables

EXAM 3: due April 30 by 5 pm (Take-home)

Exam 1 & 2 Material

Chapter 14: Partial Derivatives

14.8 - Lagrange Multipliers

Chapter 15: Multiple Integrals

- 15.1 Double Integrals over Rectangles
- 15.2 Double Integrals over General Regions
- 15.3 Double Integrals in Polar Coordinates

Vector Functions

13.2 - Derivatives and Integrals of

12.6 - Cylinders and Quadric Surfaces

Chapter 13: Vectors Functions 13.1 - Vector Functions and Space Curves

- 14.2 Limits and Continuity
- 14.3 Partial Derivatives
- 14.4 Tangent Planes and Linear Approximations
- 14.5 The Chain Rule
- 14.6 Directional Derivatives and the Gradient Vector
- 14.7 Maximum and Minimum Values
- 15.4 Applications of Double Integrals
- 15.6 Triple Integrals
- 15.7 Triple Integrals in Cylindrical Coordinates
- 15.8 Triple Integrals in Spherical Coordinates

Chapter 18: Vector Calculus

16.1 - Vector Fields

16.2 - Line Integrals

FINAL EXAM on Monday, May 7 from 2-5 pm

Everything we covered from Chapters 12, 13, 14, 15, and 16 up to 16.4.

Notes

Chapter 12: Vectors and the Geometry of Space

- The length of a vector and the relationship to distances between points
- Addition, subtraction, and scalar multiplication of vectors, together with the geometric interpretations of these operations
- Basic properties of vector operations
- The dot product: $\vec{v} \cdot \vec{w} = v_1w_1 + v_2w_2 + v_3w_3$
- Basic algebraic properties
- The geometric meaning of the dot product in terms of lengths and angles: in particular the formula $\vec{v} \cdot \vec{w} = ||\vec{v}|| \, ||\vec{w}|| \cos(\theta)$
- Angle formula: $\theta = \cos^{-1} \left(\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|} \right)$ $\|\vec{v}\| \, \|\vec{w}\|$ \setminus
- $\|\vec{a}\|^2 = \vec{a} \cdot \vec{a}$
- Vector projections: geometric meaning and formulas. Projection of \vec{b} onto \vec{a} : $comp_{\vec{a}}(\vec{b}) = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|}$ $\frac{\alpha}{\|\vec{a}\|}$ this is just a length. There is also the vector version that points along the direction of \vec{a} : $proj_{\vec{a}}(\vec{b}) = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2}$ $\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2} \vec{a}$ or $proj_{\vec{a}}(\vec{b}) = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$ $\frac{a}{\vec{a} \cdot \vec{a}} \vec{a}.$
- The cross product: definition and basic properties
- The geometric meaning of the cross product: in particular $\vec{v} \times \vec{w}$ is orthogonal to \vec{v} and \vec{w} , with magnitude $\|\vec{v} \times \vec{w}\| = \|\vec{v}\| \|\vec{w}\| \sin(\theta)$, and direction given by the right-hand rule
- $\|\vec{v} \times \vec{w}\|$ is the area of the parallelogram spanned by \vec{v} and \vec{w} .
- $\vec{u} \cdot (\vec{v} \times \vec{w})$ is the volume of the parallelopiped spanned by \vec{u} , \vec{v} and \vec{w} .
- Tests for Orthogonality:
	- \vec{v} and \vec{w} are orthogonal $\iff \vec{v} \cdot \vec{w} = 0$
	- \vec{v} and \vec{w} are parallel $\iff \vec{v} \times \vec{w} = 0$
	- \vec{u}, \vec{v} and \vec{w} are coplanar $\iff \vec{u} \cdot (\vec{v} \times \vec{w}) = 0$
- LINES AND PLANES WITH VECTORS
- Intrinsic description (vectors) vs. Extrinsic description (scalar equations)
- Lines: passage between a vector equation, parametric equations, and symmetric equations
- Vector Eq of a line: $|\vec{r} = \vec{P} + t\vec{v}|$ (in book $\vec{r}_0 = \vec{P}$)
- line segment between two points
- Planes: passage between a vector description (a point together with two direction vectors) and a scalar equation
- Vector Eq of a plane: $\overrightarrow{n} \cdot \overrightarrow{v} = 0$ (in book $\overrightarrow{r} \overrightarrow{r}_0 = \overrightarrow{v} = \langle x x_0, y y_0, z z_0 \rangle$)
- Distance from point P and a plane $\mathcal{P}: ax + by + cz + d = 0: \boxed{D = comp_{\vec{n}}(\vec{PQ})}$, where Q is any point on P, or $D = \frac{ax_1+by_1+cz_1+d}{\sqrt{a^2+b^2+c^2}}$
- Using vector algebra to solve geometric problems about lines and planes–it is essential that you think geometrically and try to save the number crunching in components for the last moment.
- GEOMETRY OF SURFACES
- Cylinders: know how to spot a "free (missing) variable" to help sketch
- QUADRIC SURFACES: Spheres, Cones, Ellipsoids, Elliptic Paraboloid, Hyperboloid of 1-sheet, Hyperboloid of 2-sheets, Hyperbolic Paraboloid
- Be able to recognize the above either by memorizing their equations or by using intersection with planes as done in class

Chapter 13: Vectors Functions

- Functions $f: X \to Y$ where set X is domain (=set of inputs), Y is the range (=set of outputs)
- We'll only worry about: $f: \mathbb{R}^n \to \mathbb{R}$ with $n, m \geq 1$
- $n = m = 1$: real-valued function of a real variable $f : \mathbb{R} \to \mathbb{R}$ $x \in \mathbb{R}, y \in \mathbb{R}$, usually written $y = f(x)$ Graph is a curve in the plane
- When $Y = \mathbb{R}$: scalar-valued functions
- When $X = \mathbb{R}$ and $Y = \mathbb{R}^2$: plane curves or vector-valued functions $t \in \mathbb{R}$, $f(t) \in \mathbb{R}^2$ usually written $f(t) = \vec{r}(t) = \langle f(t), g(t) \rangle = f(t)\hat{\imath} + g(t)\hat{\jmath}$ Graph is a plane curve moving throughout 2D plane
- When $X = \mathbb{R}$ and $Y = \mathbb{R}^3$: space curves or vector-valued functions $t \in \mathbb{R}$, $f(t) \in \mathbb{R}^3$ usually written $f(t) = \vec{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$ Graph is a space curve moving throughout 3D plane
- Line segment from a point P to Q: $\vec{\sigma}(t) = (1-t)P + tQ, t \in [0, 1]$
- Sketching space curves, vector-valued functions
- Space Curves/VVFs: limits, continuity, differentiation rules (Theorem 3, p. 858), definite integral
- Example 4 on p. 858, know this proof
- Arclength = length of a curve; $L = \int^b$ a $|\vec{r}'(t)|dt$ Alternatively, you can use: $L = \int^b$ a $\sqrt{(f'(t))^2 + (g'(t))^2 + (h'(t))^2}dt$
- unit tangent vector: $\vec{T}(t) = \frac{\vec{r}'(t)}{1 \vec{r}(t)}$ $|\vec{r}'(t)|$
- Curvature = bending from flat; $\kappa(t) = \frac{|\vec{T}'(t)|}{|\vec{\sigma}'(t)|}$ $\displaystyle{\frac{|\vec{T}'(t)|}{|\vec{r}'(t)|}=\frac{|\vec{r}'\times\vec{r}''|}{|\vec{r}'(t)|^3}}$ $|\vec{r}'(t)|^3$
- TNB Frame: \vec{T} , \vec{N} , \vec{B} all unit length and mutually orthogonal to each other. Hence, making a little "frame":

$$
\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|}
$$
 and $\vec{B}(t) = \vec{T}(t) \times \vec{N}(t)$

- Given a space curve $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$, we call $\vec{r}(t)$ the position vector-valued function. The velocity vector-valued function is the derivative of the position function: $\vec{v}(t) = \vec{r}'(t)$ and it's speed is the length of the velocity vector: $|\vec{v}(t)|$. It's acceleration VVF is the derivative of the velocity: $\vec{a}(t) = \vec{v}'(t) = \vec{r}''(t).$
- Newton's Second Law: $\vec{F} = m\vec{a}$.
- Vector Differential Equations; initial conditions

Chapter 14: Partial Derivatives

- Functions: $f: \mathbb{R}^n \to \mathbb{R}^m$ with $n, m \geq 1$ Now, we will have $n > 1$: functions of several variables!
- $n = 2$, $m = 1$: Scalar-Valued function of TWO variables $(x, y) \in \mathbb{R}^2$, $f(x, y) \in \mathbb{R}$ Graph is $\overline{z = f(x, y)}$ Graph is a surface in space Domain D is a subset of the plane \mathbb{R}^2 Level Curves: $f(x, y) = k$ for k fixed are curves in plane with height fixed–"isotherms"
- $n > 3, m = 1$: SVFs of three or more variables $(x_1, x_2, x_3, \ldots, x_n) \in \mathbb{R}^n$, $f(x_1, x_2, x_3, \ldots, x_n) \in \mathbb{R}$ Graph: none! Instead need to use other techniques Level Surfaces: $f(x_1, x_2, x_3, \ldots, x_n) = k$ for k fixed
- Limits: $\lim_{(x,y)\to(a,b)} f(x,y) = L$ means: "as (x, y) approaches (a, b) along any possible path, the values $f(x, y)$ approach the unique value L."
- Know how to compute limits and to show when limits DNE by using different paths
- Continuity: $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$
- Partial Derivatives: Given $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x, y)$ $\frac{\partial f}{\partial x}(a, b) = \lim_{ht \to 0}$ $f(a+h,b)-f(a,b)$ $\frac{h}{h}$ the partial derivative of f with respect to x at the point (a, b) $\frac{\partial f}{\partial y}(a, b) = \lim_{ht \to 0}$ $f(a, b+h) - f(a, b)$ $\frac{b}{h}$ the partial derivative of f with respect to y at the point (a, b) BUT: computing them is easy! Just: "pretend the other variable is constant"
- Know the geometry of the partial derivatives as slopes of the appropriate tangent lines
- Implicit Diff with partial derivatives
- Higher partial derivatives: $f_{xx} = \frac{\partial^2 f}{\partial x^2}$, etc
- Clairaut's Theorem: equality of mixed partials is when the second-order partial derivatives are continuous functions
- Tangent Planes: Given $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x, y)$ The tangent plane of f at $P = (a, b, f(a, b))$ is $\boxed{z = f(a, b) + f_x(a, b) \cdot (x - a) + f_y(a, b) \cdot (y - b)}$ Know how this formula was derived in class with $\vec{n} = \langle -f_x, -f_y, 1 \rangle$
- Linearization: $L(x, y) = f(a, b) + f_x(a, b) \cdot (x a) + f_y(a, b) \cdot (y b)$ When (x, y) is close to (a, b) , then $f(x, y) \approx L(x, y)$ –that is the linearization is a good approximation of f near P
- f is differentiable at $P = (a, b, f(a, b))$ if the tangent plane exists at P. Notice: this is stronger than simply requiring that the partial derivatives f_x and f_y exist at P. Theorem: if f_x and f_y are continuous, then f is differentiable
- Differentials:

dx and dy can be any real numbers (usually, $dx = \Delta x = x_2 - x_1$, $dy = \Delta y = y_2 - y_1$) Actual change in $z = f(x, y)$ from $P = (x_1, y_1)$ to $Q = (x_2, y_2)$ is: $\Delta z = z_2 - z_1 = f(Q) - f(P)$ Approximate change is given by the differential dz : $\overline{dz} = f_x(a, b) \cdot dx + f_y(a, b) \cdot dy$ dz sometimes called the total differential

Works for higher-dimensions too: $dz = f_{x_1} \cdot dx_1 + f_{x_2} \cdot dx_2 + \cdots + f_{x_n} \cdot dx_n$

• Chain Rule:

Basic chain rule: $f : \mathbb{R}^3 \to \mathbb{R}$ with $f(x, yz)$, $g(t) : \mathbb{R} \to \mathbb{R}^3$ with $g(t) = \langle x(t), y(t), z(t) \rangle$, then the derivative of $(f \circ q)(t) : \mathbb{R} \to \mathbb{R}$ is

$$
\frac{d}{dt}f(x(t), y(t), z(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt}
$$

Tree diagrams are helpful for book-keeping:

• General Chain Rule:

Assume $u : \mathbb{R}^n \to \mathbb{R}$ is a SVF of n variables written $u(x_1, x_2, \ldots, x_n)$ and each $x_i : \mathbb{R}^m \to \mathbb{R}$ is a SVF of m variables written $x_i(t_1, t_2, \ldots, t_m)$ for each $i = 1, 2, \ldots, n$. Then

$$
\frac{\partial u}{\partial t_j} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_j} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_j} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_j}
$$

Notice: in the above formula the t_j is the same, but we take all possible partial derivatives of u with respect to the x_i 's as i ranges from 1 to n . The tree diagram is helpful:

• Gradient Vector: Given $f(x, y)$ or $f(x, y, z)$ the gradient collects all the partial derivatives into a vector:

 $\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle$ or $\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle$ Common notations: $\nabla f = \text{grad}(f) = \text{del}(f) = \partial(f)$ This generalizes easily to higher dimensions

• Directional Derivative:

The directional derivative of f in the direction of the unit vector $\vec{u} = \langle u_1, u_2 \rangle$ (or $\vec{u} = \langle u_1, u_2, u_3 \rangle$): $D_{\vec{u}}(f) = f_x(a, b) \cdot u_1 + f_y(a, b) \cdot u_2$ or $D_{\vec{u}}(f) = f_x(a, b, c) \cdot u_1 + f_y(a, b, c) \cdot u_2 + f_z(a, b, c) \cdot u_3$ This generalizes easily to higher dimensions. We can write it compactly for all dimensions as: $D_{\vec{u}}(f) = \nabla(f) \cdot \vec{u}$

- Maximizing the Directional derivative: the maximum of $D_{\vec{u}}(f)$ at a point $P = (a, b)$ is given by $|\nabla f(a, b)|$ and occurs when \vec{u} is in the same direction as $\nabla f(a, b)$. the minimum of $D_{\vec{u}}(f)$ at a point $P = (a, b)$ is given by $-|\nabla f(a, b)|$ and occurs when \vec{u} is in the opposite direction as $\nabla f(a, b)$.
- Level Surfaces, Tangent Planes, and Gradients

Given a function $F : \mathbb{R}^3 \to \mathbb{R}$. Consider it's level surface $S : F(x, y, z) = k$. Then the gradient of F is normal to the tangent plane at a point $P = (a, b, c)$ on the surface S (as long as it's not the zero vector), that is

$$
(\nabla F)(a, b, c,) \cdot \vec{r}'(t_0) = 0
$$

for any space curve $\vec{r}(t)$ that travels inside the surface S and passes through P at t_0 . We can use this to find the equation of the tangent plane: $(\nabla F)(a, b, c) \cdot (x - a, y - b, z - c) = 0$.

BONUS MATERIAL

How is this related to the derivation of the tangent plane we learned earlier? Previously we started with $z = f(x, y)$ a function of two variables and its graph was a surface S. We can view it as a function of three variables $F(x, y, z) = z - f(x, y)$ and the surface S is the level surface of F with $k = 0$.

From the gradient equation for $F(x, y, z) = z - f(x, y)$:

$$
\nabla F(x, y, z) = \langle \frac{\partial}{\partial x}(z - f(x, y)), \frac{\partial}{\partial y}(z - f(x, y)), \frac{\partial}{\partial z}(z - f(x, y)) \rangle
$$

= $\langle -f_x(x, y), -f_y(x, y), 1 \rangle$

This was exactly what we got in section 14.4 where we used $\vec{n} = \vec{f_x} \times \vec{f_y} = \langle 1, 0, f_x \rangle \times \langle 0, 1, f_y \rangle$.

• MAX & MIN VALUES: know the definitions of a local min/local max and global min/global max VALUES of a function f .

Know the distinction between the min/max value of f and the point where it occurs.

- Critical Points: $P = (a, b)$ is a critical point of f if $\nabla f(a, b) = 0$ or DNE. That is, if $f_x(a, b) = 0$ and $f_y(a, b) = 0$; or if one of f_x or f_x DNE.
- "Fermat's Theoem:" If f has a local min/max at P and f is differentiable at P , then P is a critical point of f
- $C²$ functions = second-order partial derivatives exist and are continuous
- Know: Let $A = f_{xx}(a, b), C = f_{yy}(a, b), B = f_{xy}(a, b).$ Let $\boxed{D = AC - B^2}$ called the discriminant.
- SDT: Second Derivative Test: Assume: f is C^2 and $P = (a, b)$ is a critical point of f.

Note: when $D > 0$, then $AC - B^2 > 0$ so $AC > B^2 > 0$. This implies that both A and C have the same sign. So either both $A > 0$ and $C > 0$ or both $A < 0$ and $C < 0$. This is why the bending in x and y directions make sense as in the figures above.

- Closed Subsets in the plane: a bounded set that contains all of its boundary points (the analogy of a closed interval in the line)
- Extreme Value Theorem: If $f : \mathbb{R}^2 \to \mathbb{R}$ is continous and D is a closed subset of the plane, then f attains both an absolute minimum and absolute maximum value at points inside D.
- How to find Absolute Min/Max Values on a closed set D : Break up D into two parts, $I =$ inside part (open set) of D, $B =$ boundary curve Step 1: find critical points in $I=$ inside D Step 2: find the points where f has extreme values in B To do this: parametrize the boundary curve (in pieces if necessary) with $(x(t), y(t))$, then find the extra of the one-variable function $f(t) = f(x(t), y(t))$ using Calc 1 techniques. Step 3: Evaluate f at points from Steps 1 and 2 and select the largest and smallest values.
- How to find Extrema on a closed set using Lagrange Multipliers: Let $f(x, y, z)$ and $g(x, y, z)$ be functions with continuous partial derivatives. To find the extremum of $f(x, y, z)$ subject to the constraint $g(x, y, z) = c$, solve the equations:

$$
\begin{cases} \nabla f = \lambda \nabla g \\ g = c \end{cases}
$$

for x, y, z, and λ . That is, we solve: $f_x = \lambda g_x$, $f_y = \lambda g_y$, $f_z = \lambda g_z$, and $g = c$.

Chapter 15: Multiple Integrals

Summary:

- dA =infinitesimal unit of area:
	- Cartesian Coordinates in the plane: $dA = dxdy$
	- Polar Coordinates in the plane: $dA = r dr d\theta$
- dV =infinitesimal unit of volume:
	- Cartesian Coordinates in space: $dV = dxdydz$
	- Cylindrical Coordinates in space: $dV = r dr d\theta dz$
	- Spherical Coordinates in space: $dV = \rho^2 \sin(\phi) d\rho d\theta d\phi$

More details:

- Definition of a double integral as a limit
- Double Integrals of functions $f(x, y)$ over rectangles $R = [a, b] \times [c, d]$ as iterated integrals
- Geometric Interpretation of \int D $f(x, y)$ dA: Volume under the graph of the surface $z = f(x, y)$ (when $f(x, y) \ge 0$) lying above the rectangle R in the plane.
- Fubini's Theorem:

When integrating over a rectangle, you can do the integrals in any order!

$$
\iint_R f(x, y) dA = \int_a^b \left[\int_c^d f(x, y) dy \right] dx = \int_c^d \left[\int_a^b f(x, y) dx \right] dy
$$

• Area a domain D in the plane: $Area(D) = \int$ D 1 dA.

• Double Integrals over Elementary Domains D in the plane: • D is Type I:

$$
D: \begin{cases} a \le x \le b \\ g_1(x) \le y \le g_2(x) \end{cases} \implies \iint_D f dA = \int_a^b \left[\int_{g_1(x)}^{g_2(x)} f(x, y) dy \right] dx
$$

 \bullet *D* is Type II:

$$
D: \begin{cases} c \le y \le d \\ h_1(y) \le x \le h_2(y) \end{cases} \implies \iint_D f dA = \int_c^d \left[\int_{h_1(y)}^{h_2(y)} f(x, y) dx \right] dy
$$

- FACT: if f is continuous on the elementary region D, then the double integral over D exists.
- Be able to compute double integrals of Type I or II fully. But also be able to set-up the correct integrals. Given an integral, be able to read and sketch the domain and switch the order of integration.
- Double Integrals in Polar Coordinates: Given cartesian coordinates (x, y) , the equations for polar coordinates are: $r^2 = x^2 + y^2$ and $\theta =$ $\tan^{-1}(y/x)$. Given polar coordinates (r, θ) , the equations for cartesian coordinates are: $x = r \cos(\theta)$ and $y =$ $r \sin(\theta)$.

The infinitesimal unit of area is: $dA = r dr d\theta$

• When D can be easily described by polar coordinates as a sector (circles, quarter circles, annuli, etc):

$$
D: \begin{cases} a \le r \le b \\ \alpha \le \theta \le \beta \end{cases} \implies \iint_D f(x, y) dA = \int_{\alpha}^{\beta} \int_a^b f(r \cos(\theta), r \sin(\theta)) r dr d\theta
$$

or \int^b a \int^β α $f(r\cos(\theta),r\sin(\theta))\,r d\theta\,dr$ by Fubini's Theorem. \bullet When \overline{D} is a more general region in PC:

When the "wobbly sector" i.e. $r = h_1(\theta)$ is a lower bound for r and $r = h_2(\theta)$ is an upper bound for r:

$$
D: \begin{cases} \alpha \leq \theta \leq \beta \\ h_1(\theta) \leq r \leq h_2(\theta) \end{cases} \implies \iint_D f(x, y) dA = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} f(r \cos(\theta), r \sin(\theta)) r dr d\theta
$$

- Be able to find the area of regions described using PC
- Triple Integrals of $f(x, y, z)$ over boxes $B = [a, b] \times [c, d] \times [r, s]$ using iterated integrals
- Geometric Interpretation of \iiint E $f(x, y, z)$ dV: We can't visualize this! The units of this integral are 4-dimensional! It sums up the values of the function $f(x, y, z)$ times the infinitesimal volume dV as (x, y, z) ranges over the solid E in space.

Best way to think of it: $T(x,y,z)$ is temperature at point (x,y,z) in the oven B then $\iiint D$ B $T(x, y, z) dV$ is the total temperature inside B.

• Fubini's Theorem:

When integrating over a box, you can do the integrals in any order!

$$
\iiint_B f(x, y, z) dV = \int_a^b \left[\int_c^d \left[\int_r^s f(x, y, z) dz \right] dy \right] dx = \int_a^b \left[\int_r^s \left[\int_c^d f(x, y, z) dy \right] dz \right] dx
$$

and equal to any of the other 4 possibilities.

• Volume of a region *E* in space: Vol(*E*) =
$$
\iiint_E 1 dV.
$$

• Triple Integrals over Elementary Regions E in space: • E is Type I:

$$
E: \begin{cases} (x,y) \in D \\ u_1(x,y) \le z \le u_2(x,y) \end{cases} \implies \iiint_E f dV = \iint_D \left[\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \, dz \right] dA
$$

then depending on whether D is Type I or Type II:

$$
\iint_{D} \left[\int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) dz \right] dA = \int_{a}^{b} \left[\int_{g_{1}(x)}^{g_{2}(x)} \left[\int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) dz \right] dy \right] dx \qquad (D \text{ is Type I})
$$

$$
\iint_{D} \left[\int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) dz \right] dA = \int_{c}^{d} \left[\int_{h_{1}(y)}^{h_{2}(y)} \left[\int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) dz \right] dx \right] dy \qquad (D \text{ is Type II})
$$

• E is Type II:

$$
E: \begin{cases} (y,z) \in D \\ u_1(y,z) \le x \le u_2(y,z) \end{cases} \implies \iiint_E f dV = \iint_D \left[\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z) dx \right] dA
$$

then depending on whether D is Type I or Type II:

$$
\iint_D \left[\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z) dx \right] dA = \int_c^d \left[\int_{g_1(y)}^{g_2(y)} \left[\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z) dx \right] dz \right] dy \qquad (D \text{ is Type I})
$$
\n
$$
\iint \left[\int_{u_2(y,z)}^{u_2(y,z)} f(x,y,z) dx \right] dA = \int_c^d \left[\int_{g_1(y)}^{g_2(y)} \left[\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z) dx \right] dx \right] dx \qquad (D \text{ is Type II})
$$

$$
\iint_D \left[\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z) dx \right] dA = \int_r^s \left[\int_{h_1(z)}^{h_2(z)} \left[\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z) dx \right] dy \right] dz \qquad (D \text{ is Type II})
$$

• E is Type III:

$$
E: \begin{cases} (x,z) \in D \\ u_1(x,z) \le y \le u_2(x,z) \end{cases} \implies \iiint_E f dV = \iint_D \left[\int_{u_1(x,z)}^{u_2(x,z)} f(x,y,z) dy \right] dA
$$

then depending on whether D is Type I or Type II:

$$
\iint_{D} \left[\int_{u_1(x,z)}^{u_2(x,z)} f(x,y,z) dy \right] dA = \int_a^b \left[\int_{g_1(x)}^{g_2(x)} \left[\int_{u_1(x,z)}^{u_2(x,z)} f(x,y,z) dy \right] dz \right] dx \qquad (D \text{ is Type I})
$$

$$
\iint_{D} \left[\int_{u_1(x,z)}^{u_2(x,z)} f(x,y,z) dy \right] dA = \int_r^s \left[\int_{h_1(z)}^{h_2(z)} \left[\int_{u_1(x,z)}^{u_2(x,z)} f(x,y,z) dy \right] dx \right] dz \qquad (D \text{ is Type II})
$$

- Important examples are to compute the volume of spheres using either Type I, II, or III triple integrals.
- Triple Integrals in Cylindrical Coordinates: Cylindrical coordinates: (r, θ, z)

Given cartesian coordinates (x, y, z) , the equations for cylindrical coordinates are: $x^2 + y^2 = r^2$, $\theta = \tan^{-1}(y/x)$, and $z = z$.

Given cylindrical coordinates (r, θ, z) , the equations for cartesian coordinates are: $x = r \cos(\theta)$, $y = r \sin(\theta)$, and $z = z$.

The infinitesimal unit of volume is: $dV = r dr d\theta dz$

 \bullet When E can be easily described by cylindrical coordinates as a cylinder (or part of):

$$
E: \begin{cases} a \le r \le b \\ \alpha \le \theta \le \beta \\ r \le z \le s \end{cases} \implies \iiint_E f(x, y, z)dV = \int_r^s \int_\alpha^\beta \int_a^b f(r\cos(\theta), r\sin(\theta), z) r dr d\theta dz
$$

or in any of the other 5 possible orders of dr , $d\theta$, dz by Fubini's Theorem.

• When E is a more general region in CC:

Besides cylinders know the equation of cone in CC: $z = r$. So you can describe regions like an "ice cream cone"

• Triple Integrals in Spherical Coordinates:

Spherical coordinates: (ρ, θ, ϕ)

Given cartesian coordinates (x, y, z) , the equations for Spherical coordinates are: $\rho^2 = x^2 + y^2 + z^2$, $\theta = \tan^{-1}(y/x)$, and and $\phi = \cos^{-1}(z/\rho)$.

Given Spherical coordinates (ρ , θ , ϕ), the equations for cartesian coordinates are: $x = (\rho \sin(\phi)) \cos(\theta)$, $y = (\rho \sin(\phi)) \sin(\theta)$, and $z = \rho \cos(\phi)$.

The infinitesimal unit of volume is: $\sqrt{dV = \rho^2 \sin(\phi) d\rho d\theta d\phi}$

 \bullet When E can be easily described by Spherical coordinates as a sphere (or part of):

$$
E: \begin{cases} a \leq \rho \leq b \\ \alpha \leq \theta \leq \beta \\ \delta \leq \phi \leq \gamma \end{cases} \implies
$$

$$
\iiint_E f(x, y, z)dV = \int_{\delta}^{\gamma} \int_{\alpha}^{\beta} \int_a^b f(\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi)) \rho^2 \sin(\phi) d\rho d\theta d\phi
$$

or in any of the other 5 possible orders of $d\rho$, $d\theta$, $d\phi$ by Fubini's Theorem.

• When E is a more general region in SC:

Besides spheres know the equation of cone in CC: ϕ =constant. So you can describe regions like an "ice cream cone"

Chapter 16: Vector Calculus

- Vector Fields: a vector field \vec{F} gives a vector (in plane or in space) at every point. More generally, vector fields are functions: $\vec{F}: \mathbb{R}^n \to \mathbb{R}^n$
	- VFs in the Plane: $|\vec{F} = \langle P, Q \rangle|$ $\vec{F}:\mathbb{R}^2\to\mathbb{R}^2$, $\vec{F}(x,y)=\langle P(x,y),Q(x,y)\rangle$ where $P,Q:\mathbb{R}^2\to\mathbb{R}$ are SVFs. • VFs in Space: $\vec{F} = \langle P, Q, R \rangle$ $\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3, \vec{F}(x, y, z) = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$ where $P, Q, R: \mathbb{R}^3 \to \mathbb{R}$ are SVFs.
- Visualization of a vector field as a "field of arrows" and interpretation as a force field, or fluid flow
- Important examples: (a) "Explosion" $\vec{F}(x, y) = \langle x, y \rangle$; (b) "Implosion" $\vec{F}(x, y) = -\langle x, y \rangle$; (c) "Circulation" counter-clockwise $\vec{F}(x, y) = \langle -y, x \rangle$; (c) "Circulation" clockwise $\vec{F}(x, y) = \langle y, -x \rangle$
- Gradient Vector Fields: $\nabla f = \langle f_x, f_y, f_z \rangle$
- Recall: curves in the plane and in space: $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ and $\vec{ds} = |\vec{r}'(t)| dt$ since $ds = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}dt = |\vec{r}'(t)|dt$. Infinitesimal unit of vector arclength: $d\vec{r} = \vec{T}(t)ds$. But this is a pain to compute, so instead we use: $\boxed{d\vec{r} = \vec{r}'(t) dt}$
- LINE INTEGRAL OF \vec{F} ALONG A CURVE $C\colon \int_{C} \vec{F} \cdot d\vec{r}.$ General: $\sqrt{\frac{2}{\pi}}$ C $\vec{F} \cdot d\vec{r} =$ C $\vec{F}(\vec{r}(t)) \cdot \vec{r}'(t)dt$ (Notice: this uses the DOT product!) In the plane: $\sqrt{\frac{2}{1}}$ C $\langle P, Q \rangle \cdot d\vec{r} =$ C $P dx + Q dy$ Notice: $\vec{F} = \langle P, Q \rangle$ and $d\vec{r} = \vec{r}'(t)dt = \langle x'(t), y'(t) \rangle dt$, so computing the dot product gives: $\vec{F} \cdot d\vec{r} = \langle P, Q \rangle \cdot \langle x'(t), y'(t) \rangle dt = Px'(t)dt + Qy'(t)dt = Pdx + Qdy$ since $\sqrt{dx} = x'(t)dt$ and $\sqrt{dy} = y'(t)dt$ In space: $\sqrt{}$ C $\langle P, Q, R \rangle \cdot d\vec{r} =$ C $Pdx + Qdy + Rdz$
- Geometric Meaning of a line integral of a vector field along a closed curve C: Circulation of \vec{F} along the curve C
- Know how to parametrize curves: line segments, circles, ellipses, parabolas, squares, triangles, etc
- Properties of curves: orientation, $C_1 \cup C_2$, $-C$ etc
- Properties of Line integrals: $\int_{C_1 \cup C_2} \vec{F} = \int_{C_1} \vec{F} + \int_{C_2} \vec{F}$ and $\int_{-C} \vec{F} = \int_{C} \vec{F}$.
- DEFINITIONS/TERMINOLOGY:
	- Definition of \vec{F} path independent Curves C: Closed, Simple Domains D: Open, connected, simply connected NOTATION: $\boxed{\partial D = C}$ is the notation for the boundary curve of D. It comes with orientation defined by: positive when traveling along the boundary curve, the domain D is on your left side. Negative when traveling along the boundary curve, the domain D is on your right side.
- CONSERVATIVE VECTOR FIELDS Definition of \vec{F} conservative

THM \vec{F} conservative \iff 9 C $\vec{F}=0$ for all closed loops

THM \vec{F} conservative \iff it is the gradient of some function, ie $\vec{F} = \nabla f$

Note: f is called a Potential function. Know how to find f if given a conservative VF

 $\overline{\text{THM}}$ (Fundamental Thm of Line Integrals): $\overline{}$ C $\nabla f(\vec{r}) \cdot d\vec{r} = f(B) - f(A)$

(where C a curve from A to B)

THM (Fundamental Theorem of Conservative VFs):

Let D be a simply connected domain in the plane. Then

$$
\vec{F} = \langle P, Q \rangle
$$
 is conservative on $D \iff \left| \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \right|$ on D

• GREEN'S THEOREM

Assumptions needed:

- D simply connected domain in the plane (=open+connected+no holes or punctures)
- $\partial D = C$ the boundary curve is a simple, closed curve oriented positive sense (ie CCW)
- $\vec{F} = \langle P, Q \rangle$ with P, Q continuous partial derivatives inside D and on ∂D

THEN
$$
\oint_{\partial D} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA
$$

WARNING: \vec{F} must be defined and differentiable inside D for you to apply Green's Theorem

- Scalar Curl: S.Curl $(\vec{F}) = \frac{\partial Q}{\partial x} \frac{\partial F}{\partial y}$ ∂y Meaning: the infinitesimal circulation of \vec{F} at the point (x, y)
- Vector Form of Green's Theorem: \sqrt{q} ∂D $\vec{F}(\vec{r}) \cdot d\vec{r} = \iint$ D S.Curl $(\vec{F}) dA$

BONUS: GRADIENT OPERATOR, CURL, & DIVERGENCE

- Del Operators: $\nabla = \langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \rangle$ in 2D and $\nabla = \langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \rangle$ in 3D
- CURL of $F:$ $\overline{\text{Curl}(\vec{F})} = \nabla \times \vec{F}$ only for 3D $\vec{F} = \langle P, Q, R \rangle$

$$
\text{Curl}(\vec{F}) = \nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle
$$

NOTE: Curl(\overline{F}) is clearly a vector!

Geometric Meaning: the circulation at a point through a plane orthogonal to Curl (\vec{F})

• DIVERGENCE of $F: \overline{\text{div}(\vec{F})} = \nabla \cdot \vec{F}$

 $\text{div}(\vec{F}) = \nabla \cdot \vec{F} = \langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \rangle \cdot \langle P, Q \rangle = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}.$ $\text{div}(\vec{F}) = \nabla \cdot \vec{F} = \langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \rangle \cdot \langle P, Q \rangle = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$

Geometric Meaning: the contribution of \vec{F} in the direction of the "explosion vector field" at a point. This is termed "flux" of the vector field.

BONUS: INTEGRATION OVER SURFACES

- Recall Surfaces in space you can define a surface via a function $f:\mathbb{R}^2\to\mathbb{R}$ with $z=f(x,y)$ you can define a surface implicitly via a function $f:\mathbb{R}^3\to \mathbb{R}$ with $f(x,y,z)=c$
- For simplicity, we only study integrals over surfaces defined as $z = f(x, y)$ over a domain D in the plane. The domain D is the range of values for x and y (think back to double and triple integrals from previous chapters)

Given a surface
$$
S : z = f(x, y)
$$

\nInfinitesimal piece of surface area: $dA = \sqrt{1 + (f_x)^2 + (f_y)^2} dxdy$
\nNormal vector to S at a point: $\vec{n} = \langle -f_x, -f_y, 1 \rangle$ (outward pointing)
\nRecall this comes from: $\vec{n} = \vec{f}_x \times \vec{f}_y = \langle 1, 0, f_x \rangle \times \langle 0, 1, f_y \rangle$
\nUnit Normal: $\hat{n} = \frac{\vec{n}}{\|\vec{n}\|} = \frac{\langle -f_x, -f_y, 1 \rangle}{\sqrt{1 + (f_x)^2 + (f_y)^2}}$
\nOriented infinitesimal area: $d\vec{A} = \hat{n}dA = \frac{\langle -f_x, -f_y, 1 \rangle}{\sqrt{1 + (f_x)^2 + (f_y)^2}} dA = \vec{n}dxdy$ so $d\vec{A} = \vec{n}dxdy$
\nOR $d\vec{A} = \langle -f_x, -f_y, 1 \rangle dxdy$
\n• SURFACE INTEGRAL OF $\vec{\Phi}$ THROUGH $S: \iint_S \vec{F} \cdot d\vec{A}$.
\nGeneral: $\iiint_S \vec{F} \cdot d\vec{A} = \iiint_D \vec{F}(x, y) \cdot \vec{n} dxdy$
\n $\iiint_S \vec{F} \cdot d\vec{A} = \iiint_D \vec{F}(x, y) \cdot \langle -f_x, -f_y, 1 \rangle dxdy$
\nAlternate Form: $\iiint_S \langle P, Q, R \rangle \cdot d\vec{A} = \iint_D -P f_x dx - Q f_y dy + R dz$
\nGeometric Meaning: "Flux" of \vec{F} across/through the surface S

BONUS: STOKE'S THEOREM

• STOKE'S THEOREM

Assumptions needed:

- D and ∂D are planar domain and boundary curve that satisfy assumptions of Green's Theorem
- S and ∂S is a surface in space of the form $z = f(x, y)$ over the domain D and $f(\partial D) = \partial S$ (this just says that the function f evaluated over the boundary curve in the plane gives the boundary curve ∂S of the surface S in space)

• orientation ∂S is oriented in the positive sense (the surface is always on your left as you walk around the boundary)

 \bullet orientation S is oriented in the positive sense (outward pointing normal vector)

THEN
$$
\oint_{\partial S} \vec{F}(\vec{r}) \cdot d\vec{r} = \iint_{S} \text{Curl}(\vec{F}) \cdot d\vec{A}
$$

Equivalently:
$$
\oint_{\partial S} \vec{\Phi}(\vec{r}) \cdot d\vec{r} = \iint_{S} (\nabla \times \vec{F}) \cdot d\vec{A}
$$

Or:
$$
\oint_{\partial S} Pdx + Qdy + Rdz = \iint_{S} -f_x(R_y - Q_z) - f_y, (P_z - R_x) + (Q_x - P_y) dx dy
$$

BONUS: FLUX and DIVERGENCE

- FLUX of \vec{F} ACCROSS $C:$ C $\vec{\Phi} \cdot \hat{n} ds$. Geometric meaning: the contribution of \vec{F} across the curve C
- Formula for $\hat{n}ds$: • parametrize C with $\vec{r}(t) = \langle x(t), y(t) \rangle$
	- ds=infinitesimal piece of arclength of the curve $C: ds =$ $\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
	- \vec{n} = normal vector: outward pointing vector that is orthogonal to the tangent vector $\vec{r}'(t)$ • $\vec{n} = \langle \frac{dy}{dt}, -\frac{dx}{dt} \rangle$

\n- $$
\hat{n} = \text{unit normal vector: } \hat{n} = \frac{\vec{n}}{\|\vec{n}\|} = \frac{\langle \frac{dy}{dt}, -\frac{dx}{dt}\rangle}{\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}}
$$
\n- All of these simply to: $\hat{n}ds = \langle \frac{dy}{dt}, -\frac{dx}{dt}\rangle dt$
\n

• Alternate form of flux using $F(x, y) = \langle P, Q \rangle$: C $\vec{F} \cdot \hat{n} ds =$ C $-Qdx + Pdy$.

- GAUSS' DIVERGENCE THEOREM in the plane: $\sqrt{\frac{2}{\pi}}$
- GAUSS' DIVERGENCE THEOREM in space: $\sqrt{\frac{2}{L}}$ ∂E $\vec{\Phi} \cdot d\vec{A} = \iint$ E $(\nabla \cdot \vec{\Phi}) dx dy dz$ where E is a solid region in space and ∂E is the surface which is the boundary of E Note: div $(\vec{F}) = \nabla \cdot \vec{F} = \langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \rangle \cdot \langle P, Q, R \rangle = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$.

PRACTICE EXAMS

C

 $\vec{F} \cdot \hat{n} ds = \int$

D

PRACTICE PROBLEMS FOR EXAM 1

Chapter 12 Review Problems: pages 841-843

- Concept Check: 1-19 all
- True-False Quiz: 1-22 all
- Exercises: 1, 3–7, 11, 12, 15–21, 26–34

Answers: Ch 12 R

CC will be uploaded separately (see Sakai) T/F: FFFFT FTTTT TFTTF FFFFF TT Ex For odd answers see back of book.

Chapter 13 Review Problems: pages 881-883

 $(\nabla \cdot \vec{F}) dx dy$

- Concept Check: 1-5 all
- True-False Quiz: 1–6 all, 11, 12
- Exercises: 1, 2, 3, 5

Even: 4. (a) $11\hat{i} - 4\hat{j} - \hat{k}$ (b) $\sqrt{14}$ (c) -1 (d) $-3\hat{i} - 7\hat{j} - 5\hat{k}$ (e) $9\hat{i} + 15\hat{j} + 3\hat{k}$, $3\sqrt{35}$ (f) 18 (g) $\vec{0}$ (h) $33\hat{i} - 21\hat{j} + 6\hat{k}$ $(i) -1/$ √ (a) 11*t* − 4*j* − *k* (b) $\sqrt{14}$ (c) −1 (d) −3*t* − *t*) − 3*k* (e) 9*t* + 13*j* + 3*k*, 3 $\sqrt{33}$ (t) 18 (g) 0 (h) 33*t* − 21*j* + 0*k* (6) (i) (-1/6)(\hat{i} + \hat{j} − $2\hat{k}$) (k) cos⁻¹(-1/(2 $\sqrt{21}$)). 6. $\pm (7\$ $W = 87J$. 16. $x = 1+3t$, $y = 2t$, $z = -1+t$. 18. $(x-2)+4(y-1)-3(z-0) = 0$. 20. $6x+9y-z=26$. 26. (a) $x + 3y + z = 6$ (b) $\frac{x+1}{1} = \frac{y+1}{3} = \frac{z-10}{1}$ $\frac{-10}{1}$ (c) cos⁻¹(-13/ $\sqrt{319}$ $\approx 137^\circ$ so $180^\circ - 137^\circ = 43^\circ$ (d) $x = 2 + t$, $y = -t$, $z = 4 + 2t$, 28. plane parallel to yz -plane passing through $(3, 0, 0)$.

Answers: Ch 13 R CC will be uploaded separately (see Sakai) T/F: TTFTF FFFTT FTTF Ex For odd answers see back of book. Even: 2. $D = (-1, 0) \cup (0, 2]$

PRACTICE PROBLEMS FOR EXAM 2

Chapter 13 Review Problems: pages 881-883

- Concept Check: 6,7,8
- True-False Quiz: 8,10
- Exercises: 6,8,9,11,17-19

• Concept Check: 1-18 all

Chapter 14 Review Problems: pages 981-984

- True-False Quiz: 1–12 all
- Exercises: 1-6, 8-10, 11a,b, 12-17, 19-29, 32- 38, 42-48, 51-56, 63

Answers: Ch 13 R CC will be uploaded separately (see Sakai) T/F: F T

Ex For odd answers see back of book.

Even: 6. (a) $(15/8, 0, -\ln(2))$ (b) $x = 1 - 3t, y = 1 + 2t, z = t$ (c) $-3(x - 1) + 2(y - 1) + z = 0$. 8. $L = \int_0^1$ √ $\frac{1}{9t+4}dt = \int_{4}^{13}$ (v) $x = 1 - 3t$, $y = 1 + 2t$, $z = t$ (c) $-3(x - 1) + 2(y - 1) + z = 0$.
 $\sqrt{u}du/9 = (2/27)(13^{3/2} - 8)$. 18. velocity = $\vec{v}(t) = \langle 4t, 2 \rangle$, speed = $|\vec{v}(t)| = 2\sqrt{4t^2 + 1}$, acceleration = $\vec{a}(t) = \langle 4, 0 \rangle$. At $t = 1$, $\vec{r}(1) = \langle -1, 2 \rangle$, $\vec{v}(1) = \langle 4, 2 \rangle$, $\vec{a}(1) = \langle 4, 0 \rangle$.

Answers: Ch 14 R CC will be uploaded separately (see Sakai) T/F: TFFTF FTFFT TF Ex For odd answers see back of book. Even: 2. $\{(x, y) \mid -1 \le x \le 1, -1\}$ √ $\overline{4-x^2} \leq y \leq$ $\{4-x^2\}.$ 4. A circular paraboloid opening up centered

at $(0, 2, 0)$. 6. **8. 8.** (a) $f(3, 2) \approx 55$ (b) $f_x(3, 2) < 0$ since if we fix y at $y = 2$ and allow x to vary, the level curves indicate that the z-values decrease as x increases. (c) Both $f_y(2, 1)$ and $f_y(2, 2)$ are positive, because if we start from either point and move in the positive y-direction, the contour map indicates that the path is ascending. But the level curves are closer together in the y-direction at $(2, 1)$ than at $(2, 2)$, so the path is steeper (the z-values increase more rapidly) at $(2, 1)$ and hence $f_y(2, 1) > f_y(2, 2)$. 10. DNE. Choose two paths. Limit is 0 along the x-axis, but limit is $2/3$ along the line $y = x$. 12. Linearization of T at $(6, 4)$ is $L(x, y) = 80 + 3.5(x - 6) - 3.0(y - 4)$. So, $T(5, 3.8) \approx L(5, 3.8) = 77.1^{\circ}C$. 14. $g_u(u, v) =$ $v^2 - u^2 - 4uv$ $\frac{u^2-u^2-4uv}{(u^2+v^2)^2}$, $g_v(u,v) = \frac{2u^2-2v^2-2uv}{(u^2+v^2)^2}$ $\frac{Z-2v^2-2uv}{(u^2+v^2)^2}$. 16. $G_x(x,y,z) = ze^{xz}\sin(y/z)$, $G_y(x,y,z) = (e^{xz}/z)\cos(y/z)$, $G_z(x, y, z) = e^{xz} [x \sin(y/z) - (y/z^2) \cos(y/z)].$ 20. $z_{xx} = 0$, $z_{xy} = z_{yx} = -2e^{-y}$, $z_{yy} = 4xe^{-y}$. 22. $\frac{\partial^2 v}{\partial r^2} = 0, \frac{\partial^2 v}{\partial s^2} = -r \cos(s + 2t), \frac{\partial^2 v}{\partial t^2} = -4r \cos(s + 2t), \frac{\partial^2 v}{\partial r \partial s} = \frac{\partial^2 v}{\partial s \partial r} = -\sin(r + 2t), \frac{\partial^2 v}{\partial r \partial t} = \frac{\partial^2 v}{\partial t \partial r} =$ $-2\sin(r+2t), \frac{\partial^2 v}{\partial t \partial s} = \frac{\partial^2 v}{\partial s \partial t} = -2r\cos(r+2t).$ 24. True. 26. (a) $z = x+1$ (b) $x = t, y = 0, z = 1-t.$ 28. (a) $2(x-1)+2(y-1)+2(z-1) = 0$ (b) $x = t$, $y = t$, $z = t$. 32. $du = u_s ds + u_t dt = (\frac{e^{2t}}{1+se^{2t}})ds + (\frac{2se^{2t}}{1+se^{2t}})dt$ 34. (a) $A = \frac{1}{2}$ $\frac{1}{2}$ bh, d $A = A_b db + A_h dh = (\frac{h}{2})db + (\frac{b}{2})dh$, max error is $dA = (2.5)(0.002) + (6)(0.002) =$ $0.017m^2$ (notice: conver to same units!) (b) $c=$ √ $b^2 + h^2$, $dc = c_b db + c_h dh = (\frac{b}{\sqrt{b^2}})$ $\frac{b}{b^2 + h^2}$) $db + (\frac{h}{\sqrt{b^2 - h^2}})$ $\frac{h}{b^2+h^2}$)dh, max error is $dc = (5/13)(0.002) + (12/13)(0.002) = 0.0026m$. 36. $\frac{\partial v}{\partial s}|_{(0,1)} = 5$, $\frac{\partial v}{\partial t}|_{(0,1)} = 0$. 38.

 $\frac{\partial w}{\partial p} = \frac{\partial w}{\partial t}$ ∂t $\frac{\partial t}{\partial p} + \frac{\partial w}{\partial u}$ ∂u $\frac{\partial u}{\partial p} + \frac{\partial w}{\partial v}$ ∂v $\frac{\partial v}{\partial p}$, $\frac{\partial w}{\partial q} = \frac{\partial w}{\partial t}$ ∂t $\frac{\partial t}{\partial q} + \frac{\partial w}{\partial u}$ ∂u $\frac{\partial u}{\partial q} + \frac{\partial w}{\partial v}$ ∂v $\frac{\partial v}{\partial q}$, $\frac{\partial w}{\partial r} = \frac{\partial w}{\partial t}$ ∂t $\frac{\partial t}{\partial r}$ + ∂w ∂u ∂u $\frac{\partial u}{\partial r} +$ ∂w ∂v $\frac{\partial v}{\partial r}$, $\frac{\partial w}{\partial s} = \frac{\partial w}{\partial t}$ ∂t $\frac{\partial t}{\partial s} + \frac{\partial w}{\partial u}$ ∂u $\frac{\partial u}{\partial s} + \frac{\partial w}{\partial v}$ ∂v $\frac{\partial v}{\partial s}$. 42. $\frac{\partial z}{\partial x} = \frac{-2xy^2 - yz\sin(xyz)}{2z + xy\sin(xyz)}$ $\frac{2xy^2 - yz\sin(xyz)}{2z + xy\sin(xyz)}, \frac{\partial z}{\partial y} = \frac{-2x^2 - xz\sin(xyz)}{2z + xy\sin(xyz)}$ $\frac{2x - xz \sin(xyz)}{2z + xy \sin(xyz)}$. 44. (a) By Theorem 14.6.15, the max value of the directional derivative occurs when \vec{u} has the same direction as the gradient vector. (b) It is a minimum when \vec{u} is in the direction opposite to that of the gradient vector (that is, \vec{u} is in the direction of $-\nabla f$), since $D_{\vec{u}}(f) = |\nabla f| \cos \theta$ has a minimum at $\theta = \pi$. (c) The directional derivative is zero when \vec{u} is perpendicular to the gradient vector since then $D_{\vec{u}}(f) = \nabla f \cdot \vec{u} = 0$ (d) The directional derivative is half of its maximum value when $D_{\vec{u}}(f) = |\nabla f| \cos \theta = \frac{1}{2}$ $=\frac{1}{2}|\nabla f|$ when $\theta = \pi/3$. 46. $D_{\vec{u}}(f)(1,2,3) = 25/6$. 48. $\nabla f(0,1,2) = \langle 2, 0, 1 \rangle$, max rate is $|\nabla f(0,1,2)| = \sqrt{5}$. 52. CP: $(0,0), (1,1/2),$ $(0, 0)$ is a saddle point, $(1, 1/2)$ is a local min, so $f(1, 1/2) = -1$ is a local min. 54. CP: $(0, -2)$ only, $(0, 2)$ is a local min, so $f(0, -2) = -2/e$ is a local min. 56. The absolute max is $2/e$ and it occurs at $(0, \pm 1)$, the absolute min is 0 and it occurs at (0, 0).

PRACTICE PROBLEMS FOR EXAM 3

Chapter 14 Review Problems: pages 981-984

- Concept Check: 19
- True-False Quiz: N/A
- Exercises: 59, 61

Answers: Ch 14 R CC will be uploaded separately (see Sakai) T/F: F T

Chapter 15 Review Problems: pages 1061-1064

- Concept Check: 1a-d, 2b-d, 3, 7, 9
- True-False Quiz: 1-7, 9
- Exercises: 3, 5, 7, 9, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35–38, 40, 47, 48, 53

Ex For odd answers see back of book. Even: N/A Answers: Ch 15 R CC will be uploaded separately (see Sakai) T/F: TFTTT TTF Ex For odd answers see back of book.

Even: 36. Type I Triple Integral: D is type II in the xy-plane: $0 \le y \le 1$, $y + 1 \le x \le 4 - 2y$, and $0 \le x \le 4 - 2y$ $z \leq x^2y$. Thus, $V = \int_0^1 \int_{y+1}^{4-2y} \int_0^{x^2y}$ $\int_{0}^{x-y} 1\,dz\,dx\,dy = 53/20$. 38. Use Cylindrical Coordinates: E : $0 \le \theta \le 2\pi$, $0 \le r \le 2$, and $0 \le z \le 3 - y = 3 - r \sin(\theta)$. Thus, $V = \int_0^{2\pi} \int_0^2 \int_0^{3 - r \sin(\theta)} r \, dz \, dr \, d\theta = 12\pi$. 40. The 0 0 0 paraboloid and half-cone intersect when $x^2+y^2=\sqrt{x^2+y^2}$ or when $x^2+y^2=1$ or $x^2+y^2=0.$ So, $D=$ $\{(x, y) | x^2 + y^2 \le 1\}$. So, $V = \iint_D$ \lceil $\sqrt{x^2+y^2}$ $\int_{x^2+y^2}^{\sqrt{x^2+y^2}} 1\,dz\bigg[\,dA = \int_0^{2\pi}\int_0^1\int_{r^2}^r r\,dz\,dr\,d\theta = \pi/6.$ 48. E is the solid hemisphere $x^2+y^2+z^2\leq 4$ with $x\geq 0.$ In Spherical coordinates: $0\leq \rho\leq 2, -\pi/2\leq \theta\leq \pi/2, 0\leq \phi\leq 2$ π. We change $y^2\sqrt{x^2+y^2+z^2}$ into spherical coordinates $(\rho \sin(\phi) \sin(\theta))^2(\sqrt{\rho^2})^2 = \rho^3 \sin^2(\phi) \sin^2(\theta)$. So the integral becomes: $\int_0^{\pi} \int_{-\pi/2}^{\pi/2} \int_0^2 (\rho^3 \sin^2(\phi) \sin^2(\theta)) (\rho^2 \sin(\phi)) d\rho d\theta d\phi = 64\pi/9$.

PRACTICE PROBLEMS FOR FINAL EXAM

Chapter 16 Review Problems: pages 1148-1150

Note: Starred problems are optional and may show up only as extra credit problems.

- Concept Check: 1, 2, 3a,b, 4, 5, 6, 7, 9*, 10, 14*
- True-False Quiz: 1*, 2*, 4, 5, 6
- Exercises: 1a, (b*), 3-15 odd, 16, 17, 18*, 29*, 31*

Answers: Ch 16 R CC will be uploaded separately (see Sakai) T/F: 1. T. F. 2. T. 4. T. 5. F. 6. F. Ex For odd answers see back of book. Even: 16. $\int \sqrt{1 + x^3} dx + 2xy dy = \int \int [2y - 0] dA = \int^1 \int^{3x} (2y) dy dx = 3$. 18. Curl(\vec{F}) = $\nabla \times$ $\vec{F} = \langle (0 - e^{-y} \cos(z)), -(e^{-z} \cos(x) - 0), (0 - e^{-x} \cos(y)) \rangle = \langle -e^{-y} \cos(z), -e^{-z} \cos(x), -e^{-x} \cos(y) \rangle$ $\text{div}(\vec{F}) = \nabla \cdot \vec{F} = -e^{-x} \sin(y) - e^{-y} \sin(z) - e^{-z} \sin(x).$