Introduction

Since antiquity the intuitive notions of continuous change, growth,
and motion, have challenged scientific minds. Yet, the way to the
understanding of continuous variation was opened only in the seven-
teenth century when modern science emerged and rapidly developed in
close conjunction with integral and differential calculus, briefly called
calculus, and mathematical analysis.

The basic notions of Calculus are derivative and integral: the
derivative is a measure for the rate of change, the integral a measure
for the total effect of a process of continuous change. A precise under-
standing of these concepts and their overwhelming fruitfulness rests
upon the concepts of limit and of function which in turn depend upon
an understanding of the continuum of numbers. Only gradually, by
penetrating more and more into the substance of Calculus, can one
appreciate its power and beauty. In this introductory chapter we shall
explain the basic concepts of number, function, and limit, at first
simply and intuitively, and then with careful argument.

1.1 The Continuum of Numbers

The positive integers or natural numbers 1,2,3,... are abstract
symbols for indicating ‘““how many’’ objects there are in a collection or
set of discrete elements.

These symbols are stripped of all reference to the concrete qualities
of the objects counted, whether they are persons, atoms, houses, or
any objects whatever.

The natural numbers are the adequate instrument for counting
elements of a collection or “set.”” However, they do not suffice for
another equally important objective: to measure quantities such as the
length of a curve and the volume or weight of a body. The question,
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2 Introduction Ch. 1

“how much ?”, cannot be answered immediately in terms of the natural
numbers. The profound need for expressing measures of quantities
in terms of what we would like to call numbers forces us to extend the
number concept so that we may describe a continuous gradation of
measures. This extension is called the number continuum or the system
of “real numbers” (a nondescriptive but generally accepted name).
The extension of the number concept to that of the continuum is so
convincingly natural that it was used by all the great mathematicians
and scientists of earlier times without probing questions. Not until the
nineteenth century did mathematicians feel compelled to seek a firmer
logical foundation for the real number system. The ensuing precise
formulation of the concepts, in turn, led to further progress in mathe-
matics. We shall begin with an unencumbered intuitive approach, and
later on we shall give a deeper analysis of the system of real numbers.!

a. The System of Natural Numbers and Its
Extension. Counting and Measuring

The Natural and the Rational Numbers. The sequence of “natural”
numbers 1, 2, 3, . .. is considered as given to us. We need not discuss
how these abstract entities, the numbers, may be categorized from a
philosophical point of view. For the mathematician, and for anybody
working with numbers, it is important merely to know the rules or laws
by which they may be combined to yield other natural numbers. These
laws form the basis of the familiar rules for adding and multiplying
numbers in the decimal system; they include the commutative laws
a+b=b+a and ab = ba, the associative laws a + (b + ¢) =
(a + b) + cand a(bc) = (ab)c, the distributive law a(b + ¢) = ab + ac,
the cancellation law that @ + ¢ = b + ¢ implies a = b, etc.

The inverse operations, subtraction and division, are not always
possible within the set of natural numbers; we cannot subtract 2
from 1 or divide 1 by 2 and stay within that set. To make these
operations possible without restriction we are forced to extend the
concept of number by inventing the number 0, the “negative” integers,
and the fractions. The totality of all these numbers is called the class or
set of rational numbers; they are all obtained from unity by using the
“rational operations” of calculation, namely, addition, subtraction,
multiplication, and division.?

A rational number can always be written in the form p/q, where p

! A more complete exposition is given in What Is Mathematics ? by Courant and
Robbins, Oxford University Press, 1962.

2 The word “‘rational’” here does not mean reasonable or logical but is derived from
the word “ratio’” meaning the relative proportion of two magnitudes.
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and g are integers and ¢ % 0. We can make this representation unique
by requiring that q is positive and that p and ¢ have no common factor
larger than 1.

Within the domain of rational numbers all the rational operations,
addition, multiplication, subtraction, and division (except division by
zero), can be performed and produce again rational numbers. As we
know from elementary arithmetic, operations with rational numbers
obey the same laws as operations with natural numbers: thus the
rational numbers extend the system of positive integers in a com-
pletely straightforward way.

Graphical Representation of Rational Numbers. Rational numbers
are usually represented graphically by points on a straight line L,
the number axis. Taking an arbitrary point of L as the origin or point 0
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Figure 1.1 The number axis.

and another arbitrary point as the point 1, we use the distance between
these two points to serve as a scale or unit of measurement and define the
direction from 0 to 1 as ‘‘positive.”” The line with a direction thus
imposed is called a directed line. It is customary to depict L so that
the point 1 is to the right of the point 0 (Fig. 1.1). The location of any
point P on L is completely determined by two pieces of information:
the distance of P from the origin 0 and the direction from 0 to P (to the
right or left of 0). The point P on L representing a positive rational
number lies at distance z units to the right of 0. A negative rational
number x is represented by the point —2x units to the left of 0. In either
case the distance from O to the point which represents z is called the
absolute value of z, written |z|, and we have
x, if z is positive or zero,

|=| = . :
—2z, if x is negative.

We note that |z| is never negative and equals zero only when z = 0.
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From elementary geometry we recall that with ruler and compass it
is possible to construct a subdivision of the unit length into any number
of equal parts. It follows that any rational length can be constructed
and hence that the point representing a rational number x can be
found by purely geometrical methods.

In this way we obtain a geometrical representation of rational
numbers by points on L, the rational points. Consistent with our
notation for the points 0 and 1, we take the liberty of denoting both the
rational number and the corresponding point on L by the same symbol z.

The relation z < y for two rational numbers means geometrically
that the point z lies to the left of the point y. In that case the distance
between the points is ¥ — x units. If z > y, the distance is * — y units.
In either case the distance between two rational points x, y of L is
ly — | units and is again a rational number.
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Figure 1.2

A segment on L with end points a, b where a < b will be called an
interval. The particular segment with end points 0, 1 is called the unit
interval. If the end points are included in the interval, we say the interval
is closed; if the end points are excluded, the interval is called open.
The open interval, denoted by (a, b), consists of those points z for which
a < x < b, that is, of those points that lie “between” @ and b. The
closed interval, denoted by [a, b], consists of the points x for which
a <z < b In either case the length of the interval is b — a.

The points corresponding to the integers 0, &1, +2, . . . subdivide the
number axis into intervals of unit length. Every point on L is either
an end point or interior point of one of the intervals of the subdivision.
If we further subdivide every interval into ¢ equal parts, we obtain a
subdivision of L into intervals of length 1/¢ by rational points of the
form p/q. Every point P of L is then either a rational point of the form
plq or lies between two successive rational points p/g and (p + 1)/q
(see Fig. 1.2). Since successive points of subdivision are 1/g units
apart, it follows that we can find a rational point p/qg whose distance
from P does not exceed 1/¢ units. The number 1/q can be made as small
as we please by choosing g as a sufficiently large positive integer. For
example, choosing ¢ = 10" (where » is any natural number) we can

! The relation a < = (read “‘a less than or equal to z”) is interpreted as *‘either
a <z,ora=uwx" We interpret the double signs > and %+ in similar fashion.
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find a “decimal fraction” z = p/10™ whose distance from P is less than
1/10". Although we do not assert that every point of L is a rational
point we see at least that rational points can be found arbitrarily close
to any point P of L.

Density

The arbitrary closeness of rational points to a given point P of L is
expressed by saying: The rational points are dense on the number axis.
It is clear that even smaller sets of rational numbers are dense, for
example, the points = p/10", for all natural numbers n and integers p.

Density implies that between any two distinct rational points a and
b there are infinitely many other rational points. In particular, the
point halfway between a and b, ¢ = }(a + b), corresponding to the
arithmetic mean of the numbers a and b, is again rational. Taking the
midpoints of a and ¢, of b and ¢, and continuing in this manner, we can
obtain any number of rational points between a and b.

An arbitrary point P on L can be located to any degree of precision
by using rational points. At first glance it might then seem that the
task of locating P by a number has been achieved by introducing the
rational numbers. After all, in physical reality quantities are never
given or known with absolute precision but always only with a degree
of uncertainty and therefore might just as well be considered as measured
by rational numbers.

Incommensurable Quantities. Dense as the rational numbers are,
they do not suffice as a theoretical basis of measurement by numbers.
Two quantities whose ratio is a rational number are called commen-
surable because they can be expressed as integral multiples of a common
unit. As early as in the fifth or sixth century B.c. Greek mathematicians
and philosophers made the surprising and profoundly exciting dis-
covery that there exist quantities which are not commensurable with
a given unit. In particular, line segments exist which are not rational
multiples of a given unit segment.

It is easy to give an example of a length incommensurable with the
unit length: the diagonal / of a square with the sides of unit length. For,
by the theorem of Pythagoras, the square of this length / must be equal
to 2. Therefore, if / were a rational number and consequently equal to
plq, where p and q are positive integers, we should have p? = 2¢%. We
can assume that p and ¢ have no common factors, for such common
factors could be canceled out to begin with. According to the above
equation, p?is an even number; hence p itself must be even, say p = 2p’.
Substituting 2p’ for p gives us 4p’ = 242, or g% = 2p'?; consequently, ¢
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is even and so g is also even. This proves that p and ¢ both have the
factor 2. However, this contradicts our hypothesis that p and ¢ have
no common factor. Since the assumption that the diagonal can be
represented by a fraction p/q leads to a contradiction, it is false.

This reasoning, a characteristic example of indirect proof, shows that

the symbol \/2 cannot correspond to any rational number. Another
example is , the ratio of the circumference of a circle to its diameter.
The proof that 7 is not rational is much more complicated and was
obtained only in modern times (Lambert, 1761). It is easy to find many
incommensurable quantities (see Problem 1, p. 106); in fact, incom-
mensurable quantities are in a sense far more common than the
commensurable ones (see p. 99).

Irrational Numbers

Because the system of rational numbers is not sufficient for geom-
etry, it is necessary to invent new numbers as measures of incommen-
surable quantities: these new numbers are called “irrational.” The
ancient Greeks did not emphasize the abstract number concept, but
considered geometric entities, such as line segments, as the basic
elements. In a purely geometrical way, they developed a logical
system for dealing and operating with incommensurable quantities
as well as commensurable (rational) ones. This important achieve-
ment, initiated by the Pythagoreans, was greatly advanced by Eudoxus
and is expressed at length in Euclid’s famous Elements. In modern
times mathematics was recreated and vastly expanded on a foundation
of number concepts rather than geometrical ones. With the introduction
of analytic geometry a reversal of emphasis developed in the ancient
relationship between numbers and geometrical quantities and the
classical theory of incommensurables was all but forgotten or disre-
garded. It was assumed as a matter of course that to every point
on the number axis there corresponds a rational or irrational number
and that this totality of *‘real” numbers obeys the same arithmetical
laws as the rational numbers do. Only later, in the nineteenth century,
was the need for justifying such an assumption felt and was eventually
completely satisfied in a remarkable booklet by Dedekind which makes
fascinating reading even today.!

1 R. Dedekind, *“Nature and Meaning of Number” in Essays on Number, London
and Chicago, 1901. (The first of these essays, ““Continuity and Irrational Numbers,”
supplies a detailed account of the definition and laws of operation with real num-
bers.) Reprinted under title Essays on the Theory of Numbers, Dover, New York,
1964. The original of these translations appeared in 1887 under the title “Was sind
und wass sollen die Zahlen?”
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In effect, Dedekind showed that the “naive” approach practiced
by all the great mathematicians from Fermat and Newton to Gauss
and Riemann was on the right track: That the system of real numbers
(as symbols for the lengths of segments, or otherwise defined) is a
consistent and complete instrument for scientific measurement, and that
in this system the rules of computation of the rational number system
remain valid.

Without harm, one could leave it at that and turn directly to
the substance of calculus. However, for a deeper understanding of the
concept of real number, which is necessary for our later work, the
following account as well as the Supplement to this chapter should be
studied.

b. Real Numbers and Nested Intervals

For the moment let us think of the points on a line L as the basic
elements of the continuum. We postulate that to each point on L
there corresponds a “‘real number”’ z, its coordinate, and that for these
numbers x, y the relationships just described for the rational numbers
retain their meaning. In particular, the relationship x < y indicates
order on L and the expression |y — x| means the distance between the
point z and the point y. The basic problem is to relate these numbers
(or measurements on the geometrically given continuum of points) to
the rational numbers considered originally and hence ultimately to
the integers. In addition, we have to explain how to operate with the
elements of this “number-continuum’ in the same way as with the
rational numbers. Eventually, we shall formulate the concept of the
continuum of numbers independently of the intuitive geometric con-
cepts, but for the present we postpone some of the more abstract
discussion to the Supplement.

How can we describe an irrational real number? For some numbers

such as \/ 2 or 7, we can give a simple geometric characterization, but
that is not always feasible. A method flexible enough to yield every real
point consists in describing the value x by a sequence of rational
approximations of greater and greater precision. Specifically, we shall
approximate x simultaneously from the right and from the left with
successively increasing accuracy and in such a way that the margin
of error approaches zero. In other words, we use a “sequence” of
rational intervals containing z, with each interval of the sequence
containing the next one, such that the length of the interval, and with
it the error of the approximation, can be made smaller than any specified
positive number by taking intervals sufficiently far along in the sequence.



8 Introduction Ch. 1

To begin, let x be confined to a closed interval /; = [a;, b,], that is,
ay <z < by,

where a, and b, are rational (see Fig. 1.3). Within /, we consider a
“subinterval” I, = [a,, b,] containing z, that is,

a,<a<z<b,<by,

where a, and b, are rational. For example, we may choose for 7, one
of the halves of I, for  must lie in one or both of the half-intervals.
Within I, we consider a subinterval /; = [ag, b;] which also contains z:

aLa,LaLrLb<b,< b,

where a, and by are rational, etc. We require that the length of the
interval I, tends to zero with increasing n; that is, that the length of
I, is less than any preassigned positive number for all sufficiently
large n. A set of closed intervals I, I, I5, ... each containing the
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Figure 1.3 A nested sequence of intervals.

next one and such that the lengths tend to zero will be called a ““nested
sequence of intervals.” The point x is uniquely determined by the
nested sequence; that is, no other point y can lie in all 7, since the
distance between x and y would exceed the length of 7, once n is suffi-
ciently large. Since here we always choose rational points for the end
points of the 7, and since every interval with rational end points is
described by two rational numbers, we see that every point = of L,
that is, every real number, can be precisely described with the help of
infinitely many rational numbers. The converse statement is not so
obvious; we shall accept it as a basic axiom.

POSTULATE OF NESTED INTERVALS. If I}, Ip, I3, ... form a nested
sequence of intervals with rational end points, there is a point x contained
inal I}

As we shall see, this is an axiom of continuity: it guarantees that no
gaps exist on the real axis. We shall use the axiom to characterize
the real continuum and to justify all operations with limits which are

! It is important to emphasize for a nested sequence that the intervals I, are closed.
If, for example, 1, denotes the open interval 0 < = < 1/n, then each I, contains the
following one and the lengths of the intervals tend to zero; but there is no =
contained in all I,,.
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basic for calculus and analysis. (There also are many other ways of
formulating this axiom as we shall see later.)

¢. Decimal Fractions. Bases Other than Ten

Infinite Decimal Fractions. One of the many ways of defining real
numbers is the familiar description in terms of infinite decimals. It is
entirely possible to take the infinite decimals as the basic objects rather
than the points of the number axis, but we would rather proceed in a
more suggestive geometrical way by defining the infinite decimal repre-
sentation of real numbers in terms of nested sequences of intervals.

Let the number axis be subdivided into unit intervals by the points
corresponding to integers. A point x either lies between two successive
points of subdivision or is itself one of the dividing points. In either
case there is at least one integer ¢, such that

o<z < e+ 1,

so that x belongs to the closed interval I, = [¢,, ¢y + 1]. We divide
I, into ten equal parts by points ¢, + %, ¢+ o, ..., Co + 1%
The point x must then belong to at least one of the closed subintervals
of I, (possibly to two adjacent ones if « is one of the points of subdi-
vision). In other words, there is a digit ¢, (that is, one of the integers 0, 1,
2,...,9) such that x belongs to the closed interval /; given by

1 1 1
Co+ 1001 L L ¢y + 1061 + To-

Dividing /, in turn into ten equal parts, we find a digit ¢, such that =
lies in the interval 1, given by

1 1 , 1 1 1
Co+ 1001+ 10002 L2 < ¢+ 1061+ 150C2 + 100

We repeat this process. After n steps x is confined to an interval 7,
given by

oty cocedtoqpogto

10 (. 10 10" 10"

where ¢y, ¢y, . . . are all digits. The interval 7, has length 1/10", which
tends to zero for increasing n. It is clear that the /, form a nested set of
intervals, and hence that « is determined uniquely by the 7,. Since the
I, are known, once the numbers ¢, ¢;, ¢, . . . are given we find that an
arbitrary real number can be described completely by an infinite
sequence of integers ¢, ¢y, Cs, . . . , Where all except the first are digits,
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having values from zero to nine only. In ordinary decimal notation the
connection between x and ¢, ¢y, ¢, . . . is indicated by writing

xr = Co + O.CIC203 vt

(Usually, the integer c, itself is also written in decimal notation if ¢,
is positive.) Conversely, by the axiom of continuity, every such
expression denoting an infinite decimal fraction represents a real number.

It is possible that there are two different decimal representations of
the same number; for example,

1 =0.99999 - - - = 1.00000 - - -.

In our construction the integer ¢, is determined uniquely by = unless x
itself is an integer. In that case we could choose either ¢, = x or
co = x — 1. Once a choice has been made the digit ¢, is unique unless
x is one of the new points subdividing /, into ten equal parts. Con-
tinuing we find that ¢, and all ¢, are determined uniquely by x unless x
occurs as a point of subdivision at some stage. If this should happen
for the first time at the nth stage, then

1
—c
10"
where ¢y, ¢y, ..., ¢, are digits and where ¢, > 0, since otherwise x
would have been a point of subdivision at an earlier stage. It follows
that 7,,, is either the interval [z,x 4 1/10"*!] or the interval
[x — 1/10"1, x]. In the first case x will be the left-hand end point of
all later intervals 7,5, /.3, . . . , and in the second case, the right-hand
end point. We are then led either to the decimal representation

n

1
T=ctat o+

.’lf=(‘0+0.('1('2"'('.,7000"'
or the representation
x=(‘0+0.01(‘2"'(0"_ ])99999"'.

Hence the only case in which an ambiguity can arise is for a rational
number x which can be written as a fraction having a power of ten
for its denominator. We can eliminate even this ambiguity by excluding
decimal representations in which all digits from a certain point on are
nines.

In the decimal representation of real numbers the special role played
by the number ten is purely incidental. The only evident reason for
the widespread use of the decimal system is the ease of counting by
tens on our fingers (digits). Any integer p greater than one can serve
equally well. We could use p equa! subdivisions at each stage. A real
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number x would then be represented in the form
=y + 0.cic505° " -,

where ¢, is an integer, and now c, ¢,, ... have one of the values
0,1,2,...,p— 1. This representation again characterizes z by a
nested set of intervals, namely

1 1 1 1 1
Gt-a+ +, Lr<c+-+ -+ + .
p p p p p

If x is positive or zero, the integer ¢, is also positive or zero and ¢,
itself has a finite expansion of the form

co = dy + pd, + p*d, + - - - + p¥d,,

where dy, d,, ..., d; take one of the values O,1,...,p — 1. The
complete representation of x “to the base p” takes the form

xr = dkdk—l et dldo.CICZC3 et

If z is negative, we may use this kind of representation for —x.

101.01

|\ S
% % % : + T L
0 1 10 11 100 101 1011 111

Figure 1.4 The fraction %* in the binary system.

Bases other than 10 have actually been used extensively. Following
the lead of the ancient Babylonians, astronomers for many centuries
consistently represented numbers as ‘‘sexagesimal” fractions with
p = 60 as the base.

Binary Representation. The ‘“binary” system with the base p = 2
has special theoretical interest and is useful in the logical design of
computing machines. In the binary system the digits have only two
possible values, zero and one. The number %2, for example, would be
written 101.01 corresponding to the formula

3}=22-1+2l-0+1-1+%-0+2]—'2-1 (see Fig. 1.4).

Calculating with Real Numbers. Although the definition of real
numbers and their infinite decimal or binary representations, etc., are
straightforward, it may not seem obvious that one can operate with the
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number continuum exactly as with rational numbers, performing
the rational operations and retaining the laws of arithmetic, such as the
associative, the commutative, and the distributive laws. The proof is
simple, although somewhat tedious. Instead of impeding the way to the
live substance of analysis by taking up the question here, we shall
accept temporarily the possibility of ordinary arithmetic calculation
with the real numbers. A deeper understanding of the logical structure
underlying the number concept will come when we discover the idea of
limit and its implications. (See the Supplement to this chapter, p. 89.)

d. Definition of Neighborhood

Not only the rational operations but also order relations or in-
equalities for real numbers obey the same rules as for the rational
numbers.

Pairs of real numbers @ and b with a < b again give rise to closed
intervals [a, b] (given by a < = < b) and open intervals (a, b) (given by
a < x < b). Frequently we shall be led to associate with a point z, the
various open intervals that contain that point or specifically have it as
center, which we shall call neighborhoods of the point. More precisely,
for any positive e the e-neighborhood of the point z, consists of the
values z for which zy, — e < x < x4 + €, that is, it is the interval
(z, — €, ¥y, + €). Any open interval (g, b) containing a point z, always
also contains a whole neighborhood of z,.

Having defined intervals with real end points we can now form nested
sequences of intervals using the same definition as in the case of rational
end points. It is most important for the logical consistency of calculus
that for any nested sequence of intervals with real end points there is a
real number contained in all of them. (See Supplement, p. 95.)

e. Inequalities
Basic Rules

Inequalities play a far larger role in higher mathematics than in
elementary mathematics. Often the precise value of a quantity z is
difficult to determine, whereas it may be easy to make an estimate of z,
that is, to show that x is greater than some known quantity a and less
than some other quantity . For many purposes, only the information
contained in such an estimate of z is significant. We shall therefore
briefly recall some of the elementary rules about inequalities.

The basic fact is that the sum and product of two positive real
numbers are again positive; thatis,ifa > Oandb > 0,thena + b6 > 0



