VECTOR OPERATOR FORMULAS (CARTESIAN FORM)

Formulas for Grad, Div, Curl, and the Laplacian

	Cartesian (x, y, z)	
	i, j, and k are unit vectors	
	in the directions of	
	increasing <i>x</i> , <i>y</i> , and <i>z</i> .	
	M, N, and P are the	
	scalar components of	
	$\mathbf{F}(x, y, z)$ in these	
	directions.	
Gradient	$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$	
Divergence	$\nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$	
Curl	$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix}$	
Laplacian	$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$	

The Fundamental Theorem of Line Integrals

Part 1 Let $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ be a vector field whose components are continuous throughout an open connected region *D* in space. Then there exists a differentiable function *f* such that

$$\mathbf{F} = \nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$

if and only if for all points A and B in D the value of $\int_A^B \mathbf{F} \cdot d\mathbf{r}$ is independent of the path joining A to B in D.

Part 2 If the integral is independent of the path from A to B, its value is

$$\int_{A}^{B} \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A).$$

Green's Theorem and Its Generalization to Three Dimensions

Tangential form of Green's Theorem:	$\oint_C \mathbf{F} \cdot \mathbf{T} ds = \iint_R \nabla \times \mathbf{F} \cdot \mathbf{k} dA$
Stokes' Theorem:	$\oint_C \mathbf{F} \cdot \mathbf{T} ds = \iint_S \nabla \times \mathbf{F} \cdot \mathbf{n} d\sigma$
Normal form of Green's Theorem:	$\oint_C \mathbf{F} \cdot \mathbf{n} ds = \iint_R \nabla \cdot \mathbf{F} dA$
Divergence Theorem:	$\iint\limits_{S} \mathbf{F} \cdot \mathbf{n} d\sigma = \iiint\limits_{D} \nabla \cdot \mathbf{F} dV$

Vector Identities

Vector Triple Products

 $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = (\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u} = (\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}$ $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$

In the identities here, f and g are differentiable scalar functions, \mathbf{F} , \mathbf{F}_1 , and \mathbf{F}_2 are differentiable vector fields, and a and b are real constants.

 $\nabla \times (\nabla f) = \mathbf{0}$ $\nabla (fg) = f\nabla g + g\nabla f$ $\nabla \cdot (g\mathbf{F}) = g\nabla \cdot \mathbf{F} + \nabla g \cdot \mathbf{F}$ $\nabla \times (g\mathbf{F}) = g\nabla \times \mathbf{F} + \nabla g \times \mathbf{F}$ $\nabla \cdot (a\mathbf{F}_1 + b\mathbf{F}_2) = a\nabla \cdot \mathbf{F}_1 + b\nabla \cdot \mathbf{F}_2$ $\nabla \times (a\mathbf{F}_1 + b\mathbf{F}_2) = a\nabla \times \mathbf{F}_1 + b\nabla \times \mathbf{F}_2$ $\nabla (\mathbf{F}_1 \cdot \mathbf{F}_2) = (\mathbf{F}_1 \cdot \nabla)\mathbf{F}_2 + (\mathbf{F}_2 \cdot \nabla)\mathbf{F}_1 + \mathbf{F}_1 \times (\nabla \times \mathbf{F}_2) + \mathbf{F}_2 \times (\nabla \times \mathbf{F}_1)$ $\begin{aligned} \nabla \cdot (\mathbf{F}_1 \times \mathbf{F}_2) &= \mathbf{F}_2 \cdot \nabla \times \mathbf{F}_1 - \mathbf{F}_1 \cdot \nabla \times \mathbf{F}_2 \\ \nabla \times (\mathbf{F}_1 \times \mathbf{F}_2) &= (\mathbf{F}_2 \cdot \nabla) \mathbf{F}_1 - (\mathbf{F}_1 \cdot \nabla) \mathbf{F}_2 + \\ (\nabla \cdot \mathbf{F}_2) \mathbf{F}_1 - (\nabla \cdot \mathbf{F}_1) \mathbf{F}_2 \\ \nabla \times (\nabla \times \mathbf{F}) &= \nabla (\nabla \cdot \mathbf{F}) - (\nabla \cdot \nabla) \mathbf{F} = \nabla (\nabla \cdot \mathbf{F}) - \nabla^2 \mathbf{F} \\ (\nabla \times \mathbf{F}) \times \mathbf{F} &= (\mathbf{F} \cdot \nabla) \mathbf{F} - \frac{1}{2} \nabla (\mathbf{F} \cdot \mathbf{F}) \end{aligned}$