5 Credits

The Ultimate Calculus I and II Review Activity

Review of Theory: Calc I \& II

A few Important Definitions

Give precise definitions to the following.

1. Limit of f as x approaches $a \lim _{x \rightarrow a} f(x)=L$
2. Continuity of f at $x=a$
3. Limit of f as x approaches $+\infty: \lim _{x \rightarrow+\infty} f(x)=L$
4. Derivative of f at $x=a: f^{\prime}(a)=\left.\frac{d f}{d x}\right|_{x=a}=\frac{d y}{d x}=\dot{s}$
5. Equation of the tangent line to f at the point $P=(a, f(a))$.
6. Anti-derivative (or, indefinite integral) of $f, F(x)=\int f(x) d x$.
7. Definite integral of $f, \int_{a}^{b} f(x) d x$.

This one is complicated: to help, here's an outline:

- Step 1: Partition of $[a, b]$ with n subintervals $\left[x_{i-1}, x_{i}\right]$, set Δx_{i}.
- Step 2: Pick $c_{i} \in\left[x_{i-1}, x_{i}\right]$.
- Step 3: Riemann sum: $\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}$.
- Step 4: Definite Integral is the limit of Riemann sums, write this using math notatation.

8. Explain the difference between a definite integral and an anti-derivative

A few Important Theorems

Give a precise or "slogan form" of the following theorems.

1. Special Limits:
(a) $\lim _{x \rightarrow \pm \infty} \frac{1}{x}=$
(b) $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=$
(c) $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}=$
2. Derivative Rules:
(a) Power Rule
(b) Product Rule
(c) Quotient Rule
(d) Chain Rule Rule
(e) $\frac{d}{d x}[\sin (x)]=$
(f) $\frac{d}{d x}[\cos (x)]=$
(g) $\frac{d}{d x}[\tan (x)]=$
3. Derivative Tests (DTs)
(a) ID Test (Increasing/Decreasing Test
(b) First DT for Local Extrema
(c) Second DT for Concavity
(d) Second DT for Local Extrema
4. **Fundamental Theorems of Calculus**
(a) Part I
(b) Part II
5. (Optinal) Serious bonus points if you remember these without looking them up!!
(a) Intermediate Value Theorem rem

A few Important Techniques

Know the following techniques to solve problems.

1. Calculate limits using limit rules and theorems
2. Compute tangent lines and use these to approximate a function
3. Implicit Differentiation
4. Related Rates
5. Calculate complicated derivatives using Derivative Rules (DRs)
6. Sketching a curve using f^{\prime} and $f^{\prime \prime}$
7. *Optimization Problems* The largest.../The smallest...
8. Calculate anti-derivatives
9. Calculate definite integrals
10. Calculate integrals using u-substittution
11. Calculate areas using definite integrals
12. (Optinal) Calculate Riemann sums to approximate a definite integral using
(a) left-endpoints
(b) right-endpoints
(c) midpoints
(d) trapezoids
13. Integration Techniques: Integration by Parts, Trig Substitution, (Partial Fractions)
14. Integate: $\cos ^{2}(x), \sin ^{2}(x)$

Practice Problems from Calc I

Solve the following.

1. Some algebra
(a) Long division: divide $x^{4}+2 x^{2}-4 x+6$ by $x^{2}+x+3$
(b) Complete the square: $x^{2}+5 x-3$
2. Some trig
(a) Fill-out a complete unit circle
(b) Find all values of x where $\cos (x)=\frac{\sqrt{3}}{2}$
3. If $f(x)=\frac{\cos \left(\left(2 x^{2}-3\right)^{94}\right)}{7 x^{2} \cdot \tan (6 x)}+\pi^{2}$, compute $f^{\prime}(x)$
4. Find the equation of the tangent line of $g(x)=x \sin (x)$ at the point where $x=\pi / 3$.
5. Compute: $\int\left(\pi \cos (x)+\left(x^{3}-x^{5}\right)^{2}\right) d x$
6. Compute: $\int\left(3\left(x^{2}+1\right) \sec ^{2}\left(x^{3}+3 x\right)\right) d x$
7. Evaluate: $\int_{-1}^{1} x^{99} d x$
8. Find: $\frac{d}{d x} \int_{0}^{x} \tan ^{3}\left(t^{2}\right) d t$
9. Find $\frac{d y}{d x}$ as a function of x and y given that

$$
x y+y^{2}+x^{2}=3
$$

10. Find the area above $y=\cos (x)$ and below $y=\sin (x)$ between their first two intersections (see diagram).

11. Given the cost and revenue functions $C(x)=2 x+10$ and $R(x)=-2 x^{2}+20 x$ that represent the number of dollars spent or made, respectively, on the sale of x units of a certain commodity. What production levels maximize profits? Recall that the profit function is $P(x)=R(x)-C(x)$.
12. A printer need to make a poster that will have a total area of $200 \mathrm{in}^{2}$ and will have 1 inch margins on the sides, a 2 inch margin on the top and a 1.5 inch margin on the bottom (draw a picture!). What dimensions will give the largest printed area?

Practice Problems from Calc II

Solve the following.

1. Some graphs
(a) Graph: $f(x)=e^{x}$ and $g(x)=e^{-x}$
(b) Graph: $f(x)=\ln (x)$
(c) Graph: $f(x)=\sin ^{-1}(x)$ and $g(x)=\tan ^{-1}(x)$
2. Some limits
(a) Find: $\lim _{x \rightarrow 0} \frac{e^{x}}{x^{2}}$
(b) Find: $\lim _{x \rightarrow 0^{+}} x \ln (x)$
3. Some derivatives
(a) Find: $\frac{d}{d x}\left[\frac{e^{2 x} \sinh (x)}{\ln (1-x)}\right]$
(b) Find: $\frac{d}{d x}[\arctan (x)]$
(c) Find: $\frac{d}{d x}[\arcsin (x)]$
4. Some integrals
(a) Find: $\int \cos ^{2}(x) d x$
(b) Find: $\int \sin ^{2}(x) d x$
(c) Find: $\int x e^{x} d x$
(d) Find: $\int \sqrt{1-x^{2}} d x$
