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Notes

Chapter 12: Vectors and the Geometry of Space

• The length of a vector and the relationship to distances between points

• Addition, subtraction, and scalar multiplication of vectors, together with the geometric interpretations of these operations

• Basic properties of vector operations

• The dot product : ~v · ~w = v1w1 + v2w2 + v3w3

• Basic algebraic properties

• The geometric meaning of the dot product in terms of lengths and angles: in particular the formula ~v · ~w = ‖~v‖ ‖~w‖ cos(θ)

• Angle formula: θ = cos−1
(

~v · ~w
‖~v‖ ‖~w‖

)
• ‖~a‖2 = ~a · ~a

• Vector projections: geometric meaning and formulas.

Projection of~b onto ~a: comp~a(~b) =
~a ·~b
‖~a‖

this is just a length.

There is also the vector version that points along the direction of ~a:

proj~a(~b) =
~a ·~b
‖~a‖2

~a or proj~a(~b) =
~a ·~b
~a · ~a

~a.

• The cross product: de�nition and basic properties

• The geometric meaning of the cross product: in particular ~v × ~w is orthogonal to ~v and ~w, with magnitude ‖~v × ~w‖ = ‖~v‖ ‖~w‖ sin(θ),
and direction given by the right-hand rule

• ‖~v × ~w‖ is the area of the parallelogram spanned by ~v and ~w.

• ~u · (~v × ~w) is the volume of the parallelopiped spanned by ~u, ~v and ~w.

• Tests for Orthogonality:
• ~v and ~w are orthogonal ⇐⇒ ~v · ~w = 0
• ~v and ~w are parallel ⇐⇒ ~v × ~w = 0
• ~u,~v and ~w are coplanar ⇐⇒ ~u · (~v × ~w) = 0

• LINES AND PLANES WITH VECTORS

• Intrinsic description (vectors) vs. Extrinsic description (scalar equations)

• Lines: passage between a vector equation, parametric equations, and symmetric equations

• Vector Eq of a line: ~r = ~P + t~v (in book ~r0 = ~P )

• line segment between two points

• Planes: passage between a vector description (a point together with two direction vectors) and a scalar equation
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• Vector Eq of a plane: ~n · ~v = 0 (in book ~r − ~r0 = ~v = 〈x− x0, y − y0, z − z0〉)

• Distance from point P and a plane P : ax+ by + cz + d = 0: D = comp~n( ~PQ) , where Q is any point on P , or D = ax1+by1+cz1+d√
a2+b2+c2

• Using vector algebra to solve geometric problems about lines and planes–it is essential that you think geometrically and try to save the
number crunching in components for the last moment.

• GEOMETRY OF SURFACES

• Cylinders: know how to spot a “free (missing) variable” to help sketch

• QUADRIC SURFACES: Spheres, Cones, Ellipsoids, Elliptic Paraboloid, Hyperboloid of 1-sheet, Hyperboloid of 2-sheets, Hyperbolic
Paraboloid

• Be able to recognize the above either by memorizing their equations or by using intersection with planes as done in class

Chapter 13: Vectors Functions

• Functions f : X → Y

where set X is domain (=set of inputs), Y is the range (=set of outputs)

• We’ll only worry about: f : Rn → Rm with n,m ≥ 1

• n = m = 1: real-valued function of a real variable f : R→ R
x ∈ R, y ∈ R, usually written y = f(x)
Graph is a curve in the plane

• When Y = R: scalar-valued functions

• When X = R and Y = R2: plane curves or vector-valued functions
t ∈ R, f(t) ∈ R2 usually written f(t) = ~r(t) = 〈f(t), g(t)〉 = f(t)̂ı+ g(t)̂
Graph is a plane curve moving throughout 2D plane

• When X = R and Y = R3: space curves or vector-valued functions
t ∈ R, f(t) ∈ R3 usually written f(t) = ~r(t) = 〈f(t), g(t), h(t)〉 = f(t)̂ı+ g(t)̂+ h(t)k̂
Graph is a space curve moving throughout 3D plane

• Line segment from a point P to Q: ~σ(t) = (1− t)P + tQ, t ∈ [0, 1]

• Sketching space curves, vector-valued functions

• Space Curves/VVFs: limits, continuity, di�erentiation rules (Theorem 3, p. 858), de�nite integral

• Example 4 on p. 858, know this proof

• Arclength = length of a curve; L =

∫ b

a

|~r ′(t)|dt

Alternatively, you can use: L =

∫ b

a

√
(f ′(t))2 + (g′(t))2 + (h′(t))2dt

• unit tangent vector: ~T (t) =
~r ′(t)

|~r ′(t)|

• Curvature = bending from �at; κ(t) =
|~T ′(t)|
|~r ′(t)|

=
|~r ′ × ~r ′′|
|~r ′(t)|3

• TNB Frame: ~T , ~N , ~B all unit length and mutually orthogonal to each other. Hence, making a little “frame”:

~N(t) =
~T ′(t)

|~T ′(t)|
and ~B(t) = ~T (t)× ~N(t)

• Given a space curve ~r(t) = 〈x(t), y(t), z(t)〉, we call ~r(t) the position vector-valued function. The velocity vector-valued function is
the derivative of the position function:~v(t) = ~r ′(t) and it’s speed is the length of the velocity vector: |~v(t)|. It’s acceleration VVF is the
derivative of the velocity: ~a(t) = ~v ′(t) = ~r ′′(t).

• Newton’s Second Law: ~F = m~a.

• Vector Di�erential Equations; initial conditions
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Chapter 14: Partial Derivatives

• Functions: f : Rn → Rm with n,m ≥ 1

Now, we will have n > 1: functions of several variables!

• n = 2, m = 1: Scalar-Valued function of TWO variables
(x, y) ∈ R2, f(x, y) ∈ R
Graph is z = f(x, y)

Graph is a surface in space
Domain D is a subset of the plane R2

Level Curves: f(x, y) = k for k �xed are curves in plane with height �xed–“isotherms”

• n > 3,m = 1: SVFs of three or more variables
(x1, x2, x3, . . . , xn) ∈ Rn, f(x1, x2, x3, . . . , xn) ∈ R
Graph: none! Instead need to use other techniques
Level Surfaces: f(x1, x2, x3, . . . , xn) = k for k �xed

• Limits: lim
(x,y)→(a,b)

f(x, y) = L means: “as (x, y) approaches (a, b) along any possible path, the values f(x, y) approach the unique

value L.”

• Know how to compute limits and to show when limits DNE by using di�erent paths

• Continuity: lim
(x,y)→(a,b)

f(x, y) = f(a, b)

• Partial Derivatives: Given f : R2 → R, f(x, y)

∂f

∂x
(a, b) = lim

hto0

f(a+ h, b)− f(a, b)

h
the partial derivative of f with respect to x at the point (a, b)

∂f

∂y
(a, b) = lim

hto0

f(a, b+ h)− f(a, b)

h
the partial derivative of f with respect to y at the point (a, b)

BUT: computing them is easy! Just: “pretend the other variable is constant”

• Know the geometry of the partial derivatives as slopes of the appropriate tangent lines

• Implicit Di� with partial derivatives

• Higher partial derivatives: fxx = ∂2f
∂x2 , etc

• Clairaut’s Theorem: equality of mixed partials is when the second-order partial derivatives are continuous functions

• Tangent Planes: Given f : R2 → R, f(x, y)

The tangent plane of f at P = (a, b, f(a, b)) is z = f(a, b) + fx(a, b) · (x− a) + fy(a, b) · (y − b)
Know how this formula was derived in class with ~n = 〈−fx,−fy, 1〉

• Linearization: L(x, y) = f(a, b) + fx(a, b) · (x− a) + fy(a, b) · (y − b)
When (x, y) is close to (a, b), then f(x, y) ≈ L(x, y)–that is the linearization is a good approximation of f near P

• f is di�erentiable at P = (a, b, f(a, b)) if the tangent plane exists at P .
Notice: this is stronger than simply requiring that the partial derivatives fx and fy exist at P .
Theorem: if fx and fy are continuous, then f is di�erentiable

• Di�erentials:
dx and dy can be any real numbers (usually, dx = ∆x = x2 − x1, dy = ∆y = y2 − y1)
Actual change in z = f(x, y) from P = (x1, y1) to Q = (x2, y2) is: ∆z = z2 − z1 = f(Q)− f(P )

Approximate change is given by the di�erential dz: dz = fx(a, b) · dx+ fy(a, b) · dy
dz sometimes called the total di�erential
Works for higher-dimensions too: dz = fx1

· dx1 + fx2
· dx2 + · · ·+ fxn

· dxn

• Chain Rule:
Basic chain rule: f : R3 → R with f(x, yz), g(t) : R→ R3 with g(t) = 〈x(t), y(t), z(t)〉, then the derivative of (f ◦ g)(t) : R→ R is

d

dt
f(x(t), y(t), z(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
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Tree diagrams are helpful for book-keeping:

• General Chain Rule:
Assume u : Rn → R is a SVF of n variables written u(x1, x2, . . . , xn) and each xi : Rm → R is a SVF of m variables written
xi(t1, t2, . . . , tm) for each i = 1, 2, . . . n. Then

∂u

∂tj
=

∂u

∂x1

∂x1
∂tj

+
∂u

∂x2

∂x2
∂tj

+ · · ·+ ∂u

∂xn

∂xn
∂tj

Notice: in the above formula the tj is the same, but we take all possible partial derivatives of u with respect to the xi’s as i ranges from
1 to n. The tree diagram is helpful:

• Gradient Vector: Given f(x, y) or f(x, y, z) the gradient collects all the partial derivatives into a vector:
∇f(x, y) = 〈fx(x, y), fy(x, y)〉 or ∇f(x, y, z) = 〈fx(x, y, z), fy(x, y, z), fz(x, y, z)〉
Common notations: ∇f = grad(f) = del(f) = ∂(f)
This generalizes easily to higher dimensions

• Directional Derivative:
The directional derivative of f in the direction of the unit vector ~u = 〈u1, u2〉 (or ~u = 〈u1, u2, u3〉):
D~u(f) = fx(a, b) · u1 + fy(a, b) · u2 or D~u(f) = fx(a, b, c) · u1 + fy(a, b, c) · u2 + fz(a, b, c) · u3

This generalizes easily to higher dimensions. We can write it compactly for all dimensions as: D~u(f) = ∇(f) · ~u

• Maximizing the Directional derivative:
the maximum of D~u(f) at a point P = (a, b) is given by |∇f(a, b)| and occurs when ~u is in the same direction as ∇f(a, b).
the minimum of D~u(f) at a point P = (a, b) is given by −|∇f(a, b)| and occurs when ~u is in the opposite direction as ∇f(a, b).

• Level Surfaces, Tangent Planes, and Gradients
Given a function F : R3 → R. Consider it’s level surface S : F (x, y, z) = k. Then the gradient of F is normal to the tangent plane at a
point P = (a, b, c) on the surface S (as long as it’s not the zero vector), that is

(∇F )(a, b, c, ) · ~r ′(t0) = 0

for any space curve ~r(t) that travels inside the surface S and passes through P at t0.
We can use this to �nd the equation of the tangent plane: (∇F )(a, b, c) · 〈x− a, y − b, z − c〉 = 0.

• How is this related to the derivation of the tangent plane we learned earlier?
Previously we started with z = f(x, y) a function of two variables and its graph was a surface S.
We can view it as a function of three variables F (x, y, z) = z − f(x, y) and the surface S is the level surface of F with k = 0.
From the gradient equation for F (x, y, z) = z − f(x, y):

∇F (x, y, z) = 〈 ∂
∂x

(z − f(x, y)),
∂

∂y
(z − f(x, y)),

∂

∂z
(z − f(x, y))〉

= 〈−fx(x, y),−fy(x, y), 1〉
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This was exactly what we got in section 14.4 where we used ~n = ~fx × ~fy = 〈1, 0, fx〉 × 〈0, 1, fy〉.

• MAX & MIN VALUES: know the de�nitions of a local min/local max and global min/global max VALUES of a function f .
Know the distinction between the min/max value of f and the point where it occurs.

• Critical Points: P = (a, b) is a critical point of f if ∇f(a, b) = 0 or DNE. That is, if fx(a, b) = 0 and fy(a, b) = 0; or if one of fx or fx
DNE.

• “Fermat’s Theoem:” If f has a local min/max at P and f is di�erentiable at P , then P is a critical point of f

• C2 functions = second-order partial derivatives exist and are continuous

• Know: Let A = fxx(a, b), C = fyy(a, b), B = fxy(a, b).
Let D = AC −B2 called the discriminant.

• SDT: Second Derivative Test:
Assume: f is C2 and P = (a, b) is a critical point of f .

Second Derivative Test

• if D > 0 and A > 0 if D > 0 and A < 0 if D < 0 if D = 0
then then then then
f(a, b) is a local f(a, b) is a local f(a, b) is NOT an extremum test fails
MIN value MAX value (saddle point) (anything can

happen)

Note: when D > 0, then AC −B2 > 0 so AC > B2 > 0. This implies that both A and C have the same sign. So either both A > 0
and C > 0 or both A < 0 and C < 0. This is why the bending in x and y directions make sense as in the �gures above.

• Closed Subsets in the plane: a bounded set that contains all of its boundary points (the analogy of a closed interval in the line)

• Extreme Value Theorem: If f : R2 → R is continous and D is a closed subset of the plane, then f attains both an absolute minimum
and absolute maximum value at points inside D.

• How to �nd Absolute Min/Max Values on a closed set D:
Break up D into two parts, I = inside part (open set) of D, B = boundary curve
Step 1: �nd critical points in I=inside D
Step 2: �nd the points where f has extreme values in B
To do this: parametrize the boundary curve (in pieces if necessary) with (x(t), y(t)), then �nd the extra of the one-variable function
f(t) = f(x(t), y(t)) using Calc 1 techniques.
Step 3: Evaluate f at points from Steps 1 and 2 and select the largest and smallest values.

• How to �nd Extrema on a closed set using Lagrange Multipliers:
Let f(x, y, z) and g(x, y, z) be functions with continuous partial derivatives.
To �nd the extremum of f(x, y, z) subject to the constraint g(x, y, z) = c, solve the equations:{

∇f = λ∇g
g = c

for x, y, z, and λ. That is, we solve: fx = λgx, fy = λgy , fz = λgz , and g = c.

Chapter 15: Multiple Integrals

Summary:

• dA=in�nitesimal unit of area:
• Cartesian Coordinates in the plane: dA = dxdy
• Polar Coordinates in the plane: dA = rdrdθ

• dV =in�nitesimal unit of volume:
• Cartesian Coordinates in space: dV = dxdydz
• Cylindrical Coordinates in space: dV = rdrdθdz
• Spherical Coordinates in space: dV = ρ2 sin(φ) dρdθdφ
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More details:

• De�nition of a double integral as a limit

• Double Integrals of functions f(x, y) over rectangles R = [a, b]× [c, d] as iterated integrals

• Geometric Interpretation of
∫∫

D

f(x, y) dA: Volume under the graph of the surface z = f(x, y) (when f(x, y) ≥ 0) lying above the

rectangle R in the plane.

• Fubini’s Theorem:
When integrating over a rectangle, you can do the integrals in any order!∫∫

R

f(x, y) dA =

∫ b

a

[∫ d

c

f(x, y) dy

]
dx =

∫ d

c

[∫ b

a

f(x, y) dx

]
dy

• Area a domain D in the plane: Area(D) =

∫∫
D

1 dA.

• Double Integrals over Elementary Domains D in the plane:
• D is Type I:

D :

{
a ≤ x ≤ b
g1(x) ≤ y ≤ g2(x)

=⇒
∫∫

D

fdA =

∫ b

a

[∫ g2(x)

g1(x)

f(x, y) dy

]
dx

• D is Type II:

D :

{
c ≤ y ≤ d
h1(y) ≤ x ≤ h2(y)

=⇒
∫∫

D

fdA =

∫ d

c

[∫ h2(y)

h1(y)

f(x, y) dx

]
dy

• FACT: if f is continuous on the elementary region D, then the double integral over D exists.

• Be able to compute double integrals of Type I or II fully. But also be able to set-up the correct integrals. Given an integral, be able to
read and sketch the domain and switch the order of integration.

• Double Integrals in Polar Coordinates:
Given cartesian coordinates (x, y), the equations for polar coordinates are: r2 = x2 + y2 and θ = tan−1(y/x).
Given polar coordinates (r, θ), the equations for cartesian coordinates are: x = r cos(θ) and y = r sin(θ).
The in�nitesimal unit of area is: dA = r dr dθ
•When D can be easily described by polar coordinates as a sector (circles, quarter circles, annuli, etc):

D :

{
a ≤ r ≤ b
α ≤ θ ≤ β

=⇒
∫∫

D

f(x, y)dA =

∫ β

α

∫ b

a

f(r cos(θ), r sin(θ)) rdr dθ

or
∫ b

a

∫ β

α

f(r cos(θ), r sin(θ)) rdθ dr by Fubini’s Theorem.

•When D is a more general region in PC:
When the “wobbly sector” i.e. r = h1(θ) is a lower bound for r and r = h2(θ) is an upper bound for r:

D :

{
α ≤ θ ≤ β
h1(θ) ≤ r ≤ h2(θ)

=⇒
∫∫

D

f(x, y)dA =

∫ β

α

∫ h2(θ)

h1(θ)

f(r cos(θ), r sin(θ)) rdr dθ

• Be able to �nd the area of regions described using PC

• Triple Integrals of f(x, y, z) over boxes B = [a, b]× [c, d]× [r, s] using iterated integrals

• Geometric Interpretation of
∫∫∫

E

f(x, y, z) dV : We can’t visualize this! The units of this integral are 4-dimensional! It sums up the

values of the function f(x, y, z) times the in�nitesimal volume dV as (x, y, z) ranges over the solid E in space.

Best way to think of it: T (x, y, z) is temperature at point (x, y, z) in the oven B then
∫∫∫

B

T (x, y, z) dV is the total temperature

inside B.

• Fubini’s Theorem:
When integrating over a box, you can do the integrals in any order!∫∫∫

B

f(x, y, z) dV =

∫ b

a

[∫ d

c

[∫ s

r

f(x, y, z) dz

]
dy

]
dx =

∫ b

a

[∫ s

r

[∫ d

c

f(x, y, z) dy

]
dz

]
dx

and equal to any of the other 4 possibilities.
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• Volume of a region E in space: Vol(E) =

∫∫∫
E

1 dV .

• Triple Integrals over Elementary Regions E in space:
• E is Type I:

E :

{
(x, y) ∈ D
u1(x, y) ≤ z ≤ u2(x, y)

=⇒
∫∫∫

E

fdV =

∫∫
D

[∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

]
dA

then depending on whether D is Type I or Type II:∫∫
D

[∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

]
dA =

∫ b

a

[∫ g2(x)

g1(x)

[∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

]
dy

]
dx (D is Type I)

∫∫
D

[∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

]
dA =

∫ d

c

[∫ h2(y)

h1(y)

[∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

]
dx

]
dy (D is Type II)

• E is Type II:

E :

{
(y, z) ∈ D
u1(y, z) ≤ x ≤ u2(y, z)

=⇒
∫∫∫

E

fdV =

∫∫
D

[∫ u2(y,z)

u1(y,z)

f(x, y, z) dx

]
dA

then depending on whether D is Type I or Type II:∫∫
D

[∫ u2(y,z)

u1(y,z)

f(x, y, z) dx

]
dA =

∫ d

c

[∫ g2(y)

g1(y)

[∫ u2(y,z)

u1(y,z)

f(x, y, z) dx

]
dz

]
dy (D is Type I)

∫∫
D

[∫ u2(y,z)

u1(y,z)

f(x, y, z) dx

]
dA =

∫ s

r

[∫ h2(z)

h1(z)

[∫ u2(y,z)

u1(y,z)

f(x, y, z) dx

]
dy

]
dz (D is Type II)

• E is Type III:

E :

{
(x, z) ∈ D
u1(x, z) ≤ y ≤ u2(x, z)

=⇒
∫∫∫

E

fdV =

∫∫
D

[∫ u2(x,z)

u1(x,z)

f(x, y, z) dy

]
dA

then depending on whether D is Type I or Type II:∫∫
D

[∫ u2(x,z)

u1(x,z)

f(x, y, z) dy

]
dA =

∫ b

a

[∫ g2(x)

g1(x)

[∫ u2(x,z)

u1(x,z)

f(x, y, z) dy

]
dz

]
dx (D is Type I)

∫∫
D

[∫ u2(x,z)

u1(x,z)

f(x, y, z) dy

]
dA =

∫ s

r

[∫ h2(z)

h1(z)

[∫ u2(x,z)

u1(x,z)

f(x, y, z) dy

]
dx

]
dz (D is Type II)

• Important examples are to compute the volume of spheres using either Type I, II, or III triple integrals.

• Triple Integrals in Cylindrical Coordinates:
Cylindrical coordinates: (r, θ, z)
Given cartesian coordinates (x, y, z), the equations for cylindrical coordinates are: x2 + y2 = r2, θ = tan−1(y/x), and z = z.
Given cylindrical coordinates (r, θ, z), the equations for cartesian coordinates are: x = r cos(θ), y = r sin(θ), and z = z.
The in�nitesimal unit of volume is: dV = r dr dθ dz
•When E can be easily described by cylindrical coordinates as a cylinder (or part of):

E :


a ≤ r ≤ b
α ≤ θ ≤ β
r ≤ z ≤ s

=⇒
∫∫∫

E

f(x, y, z)dV =

∫ s

r

∫ β

α

∫ b

a

f(r cos(θ), r sin(θ), z) rdr dθ dz

or in any of the other 5 possible orders of dr, dθ, dz by Fubini’s Theorem.
•When E is a more general region in CC:
Besides cylinders know the equation of cone in CC: z = r. So you can describe regions like an “ice cream cone”

• Triple Integrals in Spherical Coordinates:
Spherical coordinates: (ρ, θ, φ)
Given cartesian coordinates (x, y, z), the equations for Spherical coordinates are: ρ2 = x2 + y2 + z2, θ = tan−1(y/x), and and
φ = cos−1(z/ρ).

7



Given Spherical coordinates (ρ, θ, φ), the equations for cartesian coordinates are: x = (ρ sin(φ)) cos(θ), y = (ρ sin(φ)) sin(θ), and
z = ρ cos(φ).
The in�nitesimal unit of volume is: dV = ρ2 sin(φ) dρ dθ dφ

•When E can be easily described by Spherical coordinates as a sphere (or part of):

E :


a ≤ ρ ≤ b
α ≤ θ ≤ β
δ ≤ φ ≤ γ

=⇒

∫∫∫
E

f(x, y, z)dV =

∫ γ

δ

∫ β

α

∫ b

a

f(ρ sin(φ) cos(θ), ρ sin(φ) sin(θ), ρ cos(φ)) ρ2 sin(φ)dρ dθ dφ

or in any of the other 5 possible orders of dρ, dθ, dφ by Fubini’s Theorem.
•When E is a more general region in SC:
Besides spheres know the equation of cone in CC: φ =constant. So you can describe regions like an “ice cream cone”

Chapter 16: Vector Calculus

• Vector Fields: a vector �eld ~F gives a vector (in plane or in space) at every point.
More generally, vector �elds are functions: ~F : Rn → Rn

• VFs in the Plane: ~F = 〈P,Q〉
~F : R2 → R2, ~F (x, y) = 〈P (x, y), Q(x, y)〉 where P,Q : R2 → R are SVFs.

• VFs in Space: ~F = 〈P,Q,R〉
~F : R3 → R3, ~F (x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉 where P,Q,R : R3 → R are SVFs.

• Visualization of a vector �eld as a “�eld of arrows” and interpretation as a force �eld, or �uid �ow

• Important examples: (a) “Explosion” ~F (x, y) = 〈x, y〉; (b) “Implosion” ~F (x, y) = −〈x, y〉; (c) “Circulation” counter-clockwise
~F (x, y) = 〈−y, x〉; (c) “Circulation” clockwise ~F (x, y) = 〈y,−x〉

• Gradient Vector Fields: ∇f = 〈fx, fy, fz〉

• Recall: curves in the plane and in space:
~r(t) = 〈x(t), y(t), z(t)〉 and ds = ‖~r ′(t)‖ dt

since ds =
√

(x′(t))2 + (y′(t))2 + (z′(t))2dt = ‖~r ′(t)‖dt.
In�nitesimal unit of vector arclength: d~r = ~T (t)ds.
But this is a pain to compute, so instead we use: d~r = ~r ′(t) dt

• LINE INTEGRAL OF ~F ALONG A CURVE C :
∫
C
~F · d~r.

General:
∫
C

~F · d~r =

∫
C

~F (~r(t)) · ~r ′(t)dt (Notice: this uses the DOT product!)

In the plane:
∫
C

〈P,Q〉 · d~r =

∫
C

Pdx+Qdy

Notice: ~F = 〈P,Q〉 and d~r = ~r ′(t)dt = 〈x′(t), y′(t)〉dt, so computing the dot product gives:
~F · d~r = 〈P,Q〉 · 〈x′(t), y′(t)〉dt = Px′(t)dt+Qy′(t)dt = Pdx+Qdy

since dx = x′(t)dt and dy = y′(t)dt

In space:
∫
C

〈P,Q,R〉 · d~r =

∫
C

Pdx+Qdy +Rdz

• Geometric Meaning of a line integral of a vector �eld along a closed curve C : Circulation of ~F along the curve C

• Know how to parametrize curves: line segments, circles, ellipses, parabolas, squares, triangles, etc

• Properties of curves: orientation, C1 ∪ C2, −C etc

• Properties of Line integrals:
∫
C1∪C2

~F =
∫
C1

~F +
∫
C2

~F and
∫
−C

~F = −
∫
C
~F .
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• DEFINITIONS/TERMINOLOGY:
De�nition of ~F path independent
Curves C : Closed, Simple
Domains D: Open, connected, simply connected

NOTATION: ∂D = C is the notation for the boundary curve of D. It comes with orientation de�ned by: positive when traveling
along the boundary curve, the domain D is on your left side. Negative when traveling along the boundary curve, the domain D is on
your right side.

• CONSERVATIVE VECTOR FIELDS
De�nition of ~F conservative
THM ~F conservative ⇐⇒

∮
C

~F = 0 for all closed loops

THM ~F conservative ⇐⇒ it is the gradient of some function, ie ~F = ∇f
Note: f is called a Potential function. Know how to �nd f if given a conservative VF

THM (Fundamental Thm of Line Integrals):
∫
C

∇f(~r) · d~r = f(B)− f(A)

(where C a curve from A to B)
THM (Fundamental Theorem of Conservative VFs):

Let D be a simply connected domain in the plane. Then

~F = 〈P,Q〉 is conservative on D ⇐⇒ ∂Q

∂x
=
∂P

∂y
on D

• GREEN’S THEOREM
Assumptions needed:
• D simply connected domain in the plane (=open+connected+no holes or punctures)
• ∂D = C the boundary curve is a simple, closed curve oriented positive sense (ie CCW)
• ~F = 〈P,Q〉 with P,Q continuous partial derivatives inside D and on ∂D

THEN
∮
∂D

Pdx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

WARNING: ~F must be de�ned and di�erentiable inside D for you to apply Green’s Theorem

• Scalar Curl: S.Curl(~F ) = ∂Q
∂x −

∂P
∂y

Meaning: the in�nitesimal circulation of ~F at the point (x, y)

• Vector Form of Green’s Theorem:
∮
∂D

~F (~r) · d~r =

∫∫
D

S.Curl(~F ) dA =

∫∫
D

curl(~F ) · k̂dA

GRADIENT OPERATOR, CURL, & DIVERGENCE

• Del Operators: ∇ = 〈 ∂∂x ,
∂
∂y 〉 in 2D and∇ = 〈 ∂∂x ,

∂
∂y ,

∂
∂z 〉 in 3D

• CURL of F : Curl(~F ) = ∇× ~F only for 3D ~F = 〈P,Q,R〉

Curl(~F ) = ∇× ~F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣ = 〈Ry −Qz, Pz −Rx, Qx − Py〉

NOTE: Curl(~F ) is clearly a vector!
Geometric Meaning: the circulation at a point through a plane orthogonal to Curl(~F )

• DIVERGENCE of F : div(~F ) = ∇ · ~F

div(~F ) = ∇ · ~F = 〈 ∂∂x ,
∂
∂y 〉 · 〈P,Q〉 = ∂P

∂x + ∂Q
∂y .

div(~F ) = ∇ · ~F = 〈 ∂∂x ,
∂
∂y ,

∂
∂z 〉 · 〈P,Q,R〉 = ∂P

∂x + ∂Q
∂y + ∂R

∂z .
Geometric Meaning: the contribution of ~F in the direction of the “explosion vector �eld” at a point. This is termed “�ux” or
“divergence” of the vector �eld.
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INTEGRATION OVER SURFACES

• Recall Surfaces in space
you can de�ne a surface via a function f : R2 → R with z = f(x, y)
you can de�ne a surface implicitly via a function f : R3 → R with f(x, y, z) = c (think equation of sphere)

• Given a surface S : z = f(x, y)
In�nitesimal piece of surface area: dA =

√
1 + (fx)2 + (fy)2 dxdy

Normal vector to S at a point: ~n = 〈−fx,−fy, 1〉 (outward pointing)
Recall this comes from: ~n = ~fx × ~fy = 〈1, 0, fx〉 × 〈0, 1, fy〉

Unit Normal: n̂ =
~n

‖~n‖
=

〈−fx,−fy, 1〉√
1 + (fx)2 + (fy)2

Oriented in�nitesimal area: d~S = n̂dA =
〈−fx,−fy,1〉√
1+(fx)2+(fy)2

dA = ~ndxdy so d~S = ~ndxdy

OR d~S = 〈−fx,−fy, 1〉 dxdy

• SURFACE INTEGRAL OF ~F ACROSS/THROUGH S:
∫∫
S
~F · d~S.

General:
∫∫

S

~F · d~S =

∫∫
D

~F (x, y) · ~n dxdy

∫∫
S

~F · d~S =

∫∫
D

~F (x, y) · 〈−fx,−fy, 1〉 dxdy

Alternate Form:
∫∫

S

〈P,Q,R〉 · d~S =

∫∫
D

−Pfx dx−Qfy dy +Rdz

Geometric Meaning: “Flux/Divergence” of ~F across/through the surface S

STOKE’S THEOREM

• STOKE’S THEOREM
Assumptions needed:
• D and ∂D are planar domain and boundary curve that satisfy assumptions of Green’s Theorem
• S and ∂S is a surface in space of the form z = f(x, y) over the domain D and f(∂D) = ∂S (this just says that the function f
evaluated over the boundary curve in the plane gives the boundary curve ∂S of the surface S in space)
• orientation ∂S is oriented in the positive sense (the surface is always on your left as you walk around the boundary)
• orientation S is oriented in the positive sense (outward pointing normal vector)

THEN
∮
∂S

~F (~r) · d~r =

∫∫
S

Curl(~F ) · d~S

Equivalently:
∮
∂S

~F (~r) · d~r =

∫∫
S

(∇× ~F ) · d~S

Or:
∮
∂S

Pdx+Qdy +Rdz =

∫∫
S

−fx(Ry −Qz)− fy, (Pz −Rx) + (Qx − Py) dxdy

Geometric meaning: The “circulation/curl” of ~F along ∂S.

FLUX and DIVERGENCE

• FLUX of ~F ACCROSS C in the Plane:
∫
C

~F · n̂ds.

Geometric meaning: the contribution of ~F across/through the curve C . The “�ux/divergence” across C .

• Formula for n̂ds:
• parametrize C with ~r(t) = 〈x(t), y(t)〉

• ds=in�nitesimal piece of arclength of the curve C : ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

• ~n = normal vector: outward pointing vector that is orthogonal to the tangent vector ~r′(t)

• ~n = 〈dy
dt
,−dx

dt
〉
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• n̂ = unit normal vector: n̂ =
~n

‖~n‖
=

〈dydt ,−
dx
dt 〉√(

dx
dt

)2
+
(
dy
dt

)2
• All of these simply to: n̂ds = 〈dy

dt
,−dx

dt
〉dt

• Alternate form of �ux using F (x, y) = 〈P,Q〉:
∫
C

~F · n̂ds =

∫
C

−Qdx+ Pdy.

• GREEN/DIVERGENCE THEOREM in the plane:
∫
C

~F · n̂ds =

∫∫
D

(∇ · ~F ) dxdy

• GAUSS’ DIVERGENCE THEOREM in space:
∫∫

∂E

~F · d~S =

∫∫∫
E

(∇ · ~F ) dV

where E is a solid region in space and ∂E is the surface which is the boundary of E
Note: div(~F ) = ∇ · ~F = 〈 ∂∂x ,

∂
∂y ,

∂
∂z 〉 · 〈P,Q,R〉 = ∂P

∂x + ∂Q
∂y + ∂R

∂z .
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