MATH 5C - Multivariable and Vector Calculus Summer 2019

Complete Review
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The length of a vector and the relationship to distances between points
Addition, subtraction, and scalar multiplication of vectors, together with the geometric interpretations of these operations

Basic properties of vector operations

The dot product | ¥ - W = viwy + vows + v3ws

Basic algebraic properties

The geometric meaning of the dot product in terms of lengths and angles: in particular the formula ¢ - @ = ||7]] ||| cos(0)

Angle formula: § = cos™* (%)
5]} ]2

|a|* =a-a

Vector projections: geometric meaning and formulas.

P po_dbo
Projection of b onto @: compgz(b) = 0 this is just a length.
a
There is also the vector version that points along the direction of a:
nodb Sodb
roja(b) = aor projz(b) = =—a.
proja(b) Tz 2o ja(b) = =

The cross product: definition and basic properties

The geometric meaning of the cross product: in particular ¥ x w0 is orthogonal to ¥ and w, with magnitude ||’ x || = ||7]| ||| sin(6),
and direction given by the right-hand rule

|| x || is the area of the parallelogram spanned by v and .
@ - (U x ) is the volume of the parallelopiped spanned by , ¢' and .

Tests for Orthogonality:

e ¥ and w are orthogonal <= ¥ - W =0

e ¥ and 0 are parallel <= ¢ x @ =0

e i, ¥ and W are coplanar <= @ - (¥ x W) =0

LINES AND PLANES WITH VECTORS
Intrinsic description (vectors) vs. Extrinsic description (scalar equations)

Lines: passage between a vector equation, parametric equations, and symmetric equations

Vector Eq of a line: (in book 75 = ﬁ)

line segment between two points

Planes: passage between a vector description (a point together with two direction vectors) and a scalar equation
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Vector Eq of a plane: (in book 77— 7y = ¥ = (& — o,y — Yo, 2 — 20))

Distance from point P and aplane P : ax + by +cz+d =0:| D = compﬁ(P_Q) , where () is any point on P, or D =

ax1+byi+czi1+d
VaZ4b2+c2

Using vector algebra to solve geometric problems about lines and planes—it is essential that you think geometrically and try to save the
number crunching in components for the last moment.

GEOMETRY OF SURFACES
Cylinders: know how to spot a “free (missing) variable” to help sketch

QUADRIC SURFACES: Spheres, Cones, Ellipsoids, Elliptic Paraboloid, Hyperboloid of 1-sheet, Hyperboloid of 2-sheets, Hyperbolic
Paraboloid

Be able to recognize the above either by memorizing their equations or by using intersection with planes as done in class

Chapter 13: Vectors Functions

Functions f : X — Y ‘
where set X is domain (=set of inputs), Y is the range (=set of outputs)

We’ll only worry about: withn,m > 1

n = m = 1: real-valued function of a real variable f : R — R
x € R,y € R, usually written y = f(z)
Graph is a curve in the plane

When Y = R: scalar-valued functions

When X = R and Y = R?: plane curves or vector-valued functions
t € R, f(t) € R? usually written f(t) = 7(t) = (f(t),g(t)) = f(t)i + g(t)j

Graph is a plane curve moving throughout 2D plane

When X = R and Y = R?: space curves or vector-valued functions .
t € R, f(t) € R? usually written f(t) = 7(t) = (f(t),g(t), h(t)) = f(t)i+ g(t)j + h(t)k
Graph is a space curve moving throughout 3D plane

Line segment from a point P to Q: ¢(t) = (1 — t)P +tQ, t € [0,1]
Sketching space curves, vector-valued functions
Space Curves/VVFs: limits, continuity, differentiation rules (Theorem 3, p. 858), definite integral

Example 4 on p. 858, know this proof

b
Arclength = length of a curve;| L = / |7 (¢)|dt

Alternatively, you can use: L = /b V)2 + (g'(1)2 + (W (t))2dt

(1)

7 (@)

unit tangent vector: T'(t) =

T t 2 @I
Curvature = bending from flat; x(t) = | ~,((t))|| B |T*'>(<t;|3|
r T

TNB Frame: 7', N, B all unit length and mutually orthogonal to each other. Hence, making a little “frame”:

P () R .
N(t) = o dB(t) = T(t) x N(t)

Given a space curve 7(t) = (z(t), y(t), z(t)), we call 7(¢) the position vector-valued function. The velocity vector-valued function is
the derivative of the position function:7(t) = 7’(t) and it’s speed is the length of the velocity vector: |#(t)]|. It’s acceleration VVF is the
derivative of the velocity: @(t) = v'(t) = 7" ().

Newton’s Second Law: ¥ = md.

Vector Differential Equations; initial conditions



Chapter 14: Partial Derivatives

Functions: withn,m > 1
Now, we will have n > 1: functions of several variables!

n = 2, m = 1: Scalar-Valued function of TWO variables

(z,y) €R? f(z,y) ER

Graph is a surface in space

Domain D is a subset of the plane R?

Level Curves: f(x,y) = k for k fixed are curves in plane with height fixed—“isotherms”

n > 3,m = 1: SVFs of three or more variables
(x1,22,23,...,2,) € R", f(x1,22,23,...,2,) ER
Graph: none! Instead need to use other techniques
Level Surfaces: f (1,22, 3,...,2,) = k for k fixed

Limits: ( %nn( ) f(z,y) = L |means: “as (x,y) approaches (a, b) along any possible path, the values f(z,y) approach the unique
T,y —(a,

value L

Know how to compute limits and to show when limits DNE by using different paths

Continuity: lim  f(z,y) = f(a,b)
(#,y)—(a,b)

Partial Derivatives: Given f : R? — R, f(x,v)

h,b) — b
?(a, b) = }lllfl% fla+th, })L f(a,b) the partial derivative of f with respect to « at the point (a, b)
€T vto
b+h)— b
g(a, b) = }lthH(l) flab+ })L f(a,b) the partial derivative of f with respect to y at the point (a, b)
Y o

BUT: computing them is easy! Just: “pretend the other variable is constant”
Know the geometry of the partial derivatives as slopes of the appropriate tangent lines

Implicit Diff with partial derivatives

etc

2
Higher partial derivatives: f,, = %,

Clairaut’s Theorem: equality of mixed partials is when the second-order partial derivatives are continuous functions

Tangent Planes: Given f : R? — R, f(z,y)
The tangent plane of f at P = (a, b, f(a,b)) is‘ z= f(a,b) + fz(a,b) - (x —a)+ fy(a,b) - (y —b) ‘
Know how this formula was derived in class with 7 = (— f,, — fy,, 1)

Linearization:‘ L(z,y) = f(a,b) + fz(a,b) - (x —a) + fy(a,b) - (y —b) ‘
When (x,y) is close to (a,b), then f(z,y) ~ L(x,y)-that is the linearization is a good approximation of f near P

f is differentiable at P = (a, b, f(a, b)) if the tangent plane exists at P.
Notice: this is stronger than simply requiring that the partial derivatives f, and f, exist at P.
Theorem: if f, and f, are continuous, then f is differentiable

Differentials:
dx and dy can be any real numbers (usually, dr = Az = x5 — x1, dy = Ay = yo — y1)

Actual change in z = f(z,y) from P = (21,y1) to Q = (22,y2) is: | Az = 20 — 21 = f(Q) — f(P) ‘

Approximate change is given by the differential dz: ‘ dz = fy(a,b) - dzx + fy(a,b) - dy

dz sometimes called the total differential
Works for higher-dimensions too: dz = f5, - dz1 + fq, - dxo + -+ + fa, - dzy,

Chain Rule:
Basic chain rule: f : R®* — R with f(z,y2), g(t) : R — R? with g(¢) = (z(t),y(t), z(t)), then the derivative of (f o g)(¢) : R — R is

d _Ofdx  Ofdy Of d»



Tree diagrams are helpful for book-keeping:

5/ \¢ 8\

« General Chain Rule:

Assume u : R™ — R is a SVF of n variables written u(x1, xa, ..., x,) and each ; : R™ — R is a SVF of m variables written
xi(t1,ta, ..., ty,) foreachi =1,2,...n. Then
Ou  Ou Oz ou O0xa ou Ox,,

o, oz o, " omot, T ow, ot

Notice: in the above formula the ¢; is the same, but we take all possible partial derivatives of u with respect to the x;’s as ¢ ranges from
1 to n. The tree diagram is helpful:

A

/f\\\\\
/N%\ A\\\

ot +.{1--Lm 41, £,

« Gradient Vector: Given f(z,y) or f(z,y, z) the gradient collects all the partial derivatives into a vector:

Vi(z,y) = <fL(xay)7fy(x7y)> or Vf(z,y,z) = <fl‘(xayaZ)’fy(xvyvz)vfz(xay7z)>
Common notations: V f = grad(f) = del(f) = 9(f)

This generalizes easily to higher dimensions

« Directional Derivative:
The directional derivative of f in the direction of the unit vector @ = (uy, us) (or @ = (uy, us, ug)):

| Da(f) = fula,b) - ws + £y (@,8) - us Jor| Da(f) = fula,b,e) -wr + fy(a,bc) - us + fa(a,b,0) -uy

This generalizes easily to higher dimensions. We can write it compactly for all dimensions as: ‘ Da(f)=V(f) -u ‘

« Maximizing the Directional derivative:
the maximum of Dz(f) at a point P = (a, b) is given by |V f(a,b)| and occurs when # is in the same direction as V f(a, b).
the minimum of Dz (f) at a point P = (a, b) is given by —|V f(a, b)| and occurs when # is in the opposite direction as V f(a, ).

« Level Surfaces, Tangent Planes, and Gradients
Given a function F' : R® — R. Consider it’s level surface S : F(z,y,2) = k. Then the gradient of F is normal to the tangent plane at a
point P = (a, b, ¢) on the surface S (as long as it’s not the zero vector), that is

(VF)(a,b,c,) 7' (tg) =0

for any space curve 7(¢) that travels inside the surface S and passes through P at ¢.
We can use this to find the equation of the tangent plane: (VF)(a,b,¢) - (z —a,y — b,z —¢) = 0.

« How is this related to the derivation of the tangent plane we learned earlier?
Previously we started with z = f(x,y) a function of two variables and its graph was a surface S.
We can view it as a function of three variables F'(z,y,2) = z — f(x,y) and the surface S is the level surface of F' with k = 0.
From the gradient equation for F'(z,y, z) = z — f(z,y):

V(. = (g (2~ F@) g (2~ F@a). 5 = Fe)
- (—f;c(a?,y), _fy(xvy)a 1>



This was exactly what we got in section 14.4 where we used 77 = f, x f?; = (1,0, fz) x (0,1, fy).

« MAX & MIN VALUES: know the definitions of a local min/local max and global min/global max VALUES of a function f.
Know the distinction between the min/max value of f and the point where it occurs.

« Critical Points: P = (a, ) is a critical point of f if V f(a,b) = 0 or DNE. That is, if f,(a,b) = 0 and f,(a,b) = 0; or if one of f, or f,
DNE.

+ “Fermat’s Theoem:” If f has a local min/max at P and f is differentiable at P, then P is a critical point of f

« C? functions = second-order partial derivatives exist and are continuous

« Know: Let A = f,.(a,b), C = fyy(a,b), B = fyy(a,b).
Let‘ D= AC - B? ‘called the discriminant.

« SDT: Second Derivative Test:
Assume: f is C? and P = (a, b) is a critical point of f.

eif D >0and A >0 iftD>0and A<O0 itD <0 ifD=0

then then then then

f(a,b) is alocal f(a,b) is alocal f(a,b) is NOT an extremum test fails

MIN value MAX value (saddle point) (anything can
happen)

Second Derivative Test

Note: when D > 0, then AC' — B2 > 0so AC > B? > 0. This implies that both A and C have the same sign. So either both A > 0
and C' > 0 or both A < 0 and C' < 0. This is why the bending in x and y directions make sense as in the figures above.

« Closed Subsets in the plane: a bounded set that contains all of its boundary points (the analogy of a closed interval in the line)

« Extreme Value Theorem: If f : R? — R is continous and D is a closed subset of the plane, then f attains both an absolute minimum
and absolute maximum value at points inside D.

« How to find Absolute Min/Max Values on a closed set D:
Break up D into two parts, I = inside part (open set) of D, B = boundary curve
Step 1: find critical points in /=inside D
Step 2: find the points where f has extreme values in B
To do this: parametrize the boundary curve (in pieces if necessary) with (x(t), y(¢)), then find the extra of the one-variable function
f(t) = f(x(t),y(t)) using Calc 1 techniques.
Step 3: Evaluate f at points from Steps 1 and 2 and select the largest and smallest values.

« How to find Extrema on a closed set using Lagrange Multipliers:
Let f(x,y, z) and g(z,y, z) be functions with continuous partial derivatives.
To find the extremum of f(z,y, z) subject to the constraint g(x, y, z) = ¢, solve the equations:

Vf=AVg
g==c

for z,y, z, and A. That is, we solve: f, = Agx, fy = Agy, [- = Agz,and g = c.

Chapter 15: Multiple Integrals

Summary:

+ dA=infinitesimal unit of area:
e Cartesian Coordinates in the plane: dA = dxdy
e Polar Coordinates in the plane: dA = rdrdf

«+ dV =infinitesimal unit of volume:
e Cartesian Coordinates in space: dV = dxdydz
e Cylindrical Coordinates in space: dV = rdrdfdz
e Spherical Coordinates in space: dV = p? sin(¢) dpdfd¢



More details:

« Definition of a double integral as a limit

« Double Integrals of functions f(x,y) over rectangles R = [a, b] X [c, d] as iterated integrals

« Geometric Interpretation of / f(x,y) dA: Volume under the graph of the surface z = f(x,y) (when f(z,y) > 0) lying above the
D

rectangle R in the plane.

« Fubini’s Theorem:
When integrating over a rectangle, you can do the integrals in any order!

//Rf(x,y)dAz/ab Vcdﬂx,y)dy] da::/cd Vabf@,y)dx] ay

« Area a domain D in the plane: Area(D) = // 1dA.
D

« Double Integrals over Elementary Domains D in the plane:

e DisTypel:
< <b 92(95)
D=7 :>//fdA / / ,y)dy| dx
gl( )<y<92 g1(x)

vl zeenn = M= [ {/”“ o]

« FACT: if f is continuous on the elementary region D, then the double integral over D exists.

e D is Type II:

« Be able to compute double integrals of Type I or II fully. But also be able to set-up the correct integrals. Given an integral, be able to
read and sketch the domain and switch the order of integration.

« Double Integrals in Polar Coordinates:
Given cartesian coordinates (x, %), the equations for polar coordinates are: 72 = 2% + y? and § = tan—'(y/x).
Given polar coordinates (7, §), the equations for cartesian coordinates are: = r cos(f) and y = 7 sin(0).

The infinitesimal unit of area is: | dA = r dr df

e When D can be easily described by polar coordinates as a sector (circles, quarter circles, annuli, etc):

B b
D{Zieibﬂ — //Df(x,y)dA:/ /f(rcos(ewsin(@))rdrd@

b B
or / / f(rcos(0),rsin()) rdd dr by Fubini’s Theorem.

o When'D is a more general region in PC:
When the “wobbly sector” i.e. 7 = hq(6) is a lower bound for r and = hs(0) is an upper bound for 7:

Ja<0<p _
D: {hl(ﬁ) << ho(6 = // f(z,y)dA = / /hl(e) (rcos(0),rsin(0)) rdr df

+ Be able to find the area of regions described using PC

« Triple Integrals of f(z,y, z) over boxes B = [a,b] X [¢,d] x [r, s] using iterated integrals

« Geometric Interpretation of / / / f(z,y,z)dV: We can’t visualize this! The units of this integral are 4-dimensional! It sums up the
E
values of the function f(x,y, z) times the infinitesimal volume dV" as (x, y, z) ranges over the solid E in space.
Best way to think of it: T'(z, y, z) is temperature at point (x, y, z) in the oven B then /// T(x,y,z)dV is the total temperature
B
inside B.

« Fubini’s Theorem:
When integrating over a box, you can do the integrals in any order!

///Bf(%y,z)d‘/:/ab [/cd [/Tsf(x,y,z)dz} dy} dx:/ab l/j [/Cdf(x,y,z)dy] dz} dx

and equal to any of the other 4 possibilities.



« Volume of a region F in space: Vol(F) = /// 1dV.
E

« Triple Integrals over Elementary Regions FE in space:

o [Vis Type I:
D uz(,y)
E: (z.y) € :>///de // / f(z,y,2)dz
ui(z,y) < z < up(z,y) wr (2,9)

then depending on whether D is Type I or Type II:

u2(w,y) b g2(x) ua(z,y)
// [/ f(z,y,2)dz| dA = / l/ l/ flz,y,2) dz] dy} dx (D is Type 1)
(z.y) a |Jgi(z) u (,y)
uz(w,y d ha(y) uz(z,y)
// [/ f(z,y,2)dz| dA = / [/ l/ flz,y, 2) dz] dx] dy (D is Type II)
w1 (z,y) c hi(y) uy (,y)

dA

e I/ is Type II:

dA

E:{g’(iigwwy — [[[= [ V(<)> (.9.2)do

then depending on whether D is Type I or Type II:
92(y u2(y,2)
= / / / flz,y,2z)da| dz| dy (D is Type I)
91(y) u1(y,2)

u2(y, Z)
// / flz,y,2z)dx| dA
u1(y,2)
u2(y, Z) s ha(z) u2(y,2)
// / flz,y,2)dx| dA = / / / flzyy,z)dz| dy| dz (D is Type 1)
u1(y,2) T hi(z) u1(y,2)

o I/ is Type III:

dA

B e = S = [0 e

then depending on whether D is Type I or Type II:

ws (z z) g2 (x) ua (x,z)
// [/ (z,y,2)dy| dA = / l/ l/ fz,y,2) dy] dz] dx (D is Type I)
uy (z,z) g1(z wi(z,2)
ws (z z) s ha(z) ws(z,2)
// / flx,y,2)dy| dA = / / / flx,y,2)dy| dx| dz (D is Type 1)
w1 (x,2) r hi(z) uy (x,2)

« Important examples are to compute the volume of spheres using either Type I, I, or III triple integrals.

« Triple Integrals in Cylindrical Coordinates:
Cylindrical coordinates: (r, 0, z)
Given cartesian coordinates (z,y, z), the equations for cylindrical coordinates are: 22 + y* = r2, 0 = tan~!(y/x), and z = 2.
Given cylindrical coordinates (r, 6, z), the equations for cartesian coordinates are: x = 1 cos(f), y = rsin(f), and z = z.
The infinitesimal unit of volume is: ‘ dV =rdrdfdz ‘
e When F can be easily described by cylindrical coordinates as a cylinder (or part of):

a<r<b C |
o j;e);g =>///Ef(x,y,z)d\/:/r/a/af(rcos(@),rsm(@),z)rdrd@dz

or in any of the other 5 possible orders of dr, df, dz by Fubini’s Theorem.
e When F is a more general region in CC:
Besides cylinders know the equation of cone in CC: z = r. So you can describe regions like an “ice cream cone”

« Triple Integrals in Spherical Coordinates:
Spherical coordinates: (p, 6, ¢)
Given cartesian coordinates (x, %, z), the equations for Spherical coordinates are: p? = 22 + y? + 22, § = tan~!(y/x), and and

6 = cos~(z/p).



Given Spherical coordinates (p, 8, ¢), the equations for cartesian coordinates are: = (psin(¢)) cos(6), y = (psin(¢)) sin(f), and
z = pcos(¢).
The infinitesimal unit of volume is: ‘ dV = p?sin(¢) dpdf de
e When F can be easily described by Spherical coordinates as a sphere (or part of):
a<p<b
E:qa<f<p =
0<p <~y

// F (@5, 2)dV = / / /fpsm(¢)008(9) psin(@) sin(8), pcos()) o2 sin(@)dp 4o do

or in any of the other 5 possible orders of dp, df, d¢ by Fubini’s Theorem.
e When E is a more general region in SC:
Besides spheres know the equation of cone in CC: ¢ =constant. So you can describe regions like an “ice cream cone”

Chapter 16: Vector Calculus

Vector Fields: a vector field F' gives a vector (in plane or in space) at every point.
More generally, vector fields are functions: F' : R — R"

e VFs in the Plane: | F = (P, Q)
F:R2 = R2 F(z,y) = (P(z,y), Q(z,y)) where P,Q : R — R are SVFs.
e VFs in Space: | F = (P,Q, R)
F:R3 - R3, ﬁ(x,y, 2) = (P(x,y,2),Q(z,y, 2), R(z,y, 2)) where P,Q, R : R® — R are SVFs.

Visualization of a vector field as a “field of arrows” and interpretation as a force field, or fluid flow

Important examples: (a) “Explosion” F(z,y) = (z,y); (b) “Implosion” F(x,y) = —(z,y); (c) “Circulation” counter-clockwise
F(x,y) = (—y, x); (c) “Circulation” clockwise F'(z,y) = (y, —x)

Gradient Vector Fields:‘ V= fa: [y, f2) ‘

Recall: curves in the plane and in space:

[7(t) = (@(), y(2), 2(1)) |and | ds = |7 (1) dt |

since ds = /(2/(8))2 + (' ()% + (='(1))2dt = [|r" (1) | dt.
Infinitesimal unit of vector arclength: di = T'(t)ds.

But this is a pain to compute, so instead we use: | di" = 7' (t) dt

LINE INTEGRAL OF FF ALONG A CURVE C: [, F - dF.

General: / F.df = / F(#(t)) -7 (t)dt| (Notice: this uses the DOT product!)
C C

In the plane: / (P,Q) - dr = / Pdz + Qdy
c c

Notice: F' = (P, Q) and dr = 7/ (t)dt = (2/(t),y'(t))dt, so computing the dot product gives:
Fdi = (P,Q) - (x'(t),y (t))dt = Pz'(t)dt + Qy (t)dt = Pdx + Qdy
since‘ dr = 2'(t)dt ‘and‘ dy =y (t)dt ‘

In space: / (P,Q,R) - dr = / Pdx + Qdy + Rdz
C C

Geometric Meaning of a line integral of a vector field along a closed curve C': Circulation of F along the curve C'
Know how to parametrize curves: line segments, circles, ellipses, parabolas, squares, triangles, etc
Properties of curves: orientation, C7 U Cy, —C' etc

Properties of Line integrals: f01U02 F= fCl F+ fCZ F and chﬁ = ffcﬁ



« DEFINITIONS/TERMINOLOGY:
Definition of F' path independent
Curves C': Closed, Simple
Domains D: Open, connected, simply connected

NOTATION:| 0D = C' |is the notation for the boundary curve of D. It comes with orientation defined by: positive when traveling
along the boundary curve, the domain D is on your left side. Negative when traveling along the boundary curve, the domain D is on
your right side.

. CONSERVATIYE VECTOR FIELDS
Definition of F' conservative

F conservative <> j{ F = 0 for all closed loops
c

F conservative <= it is the gradient of some function, ie F=vV f
Note: f is called a Potential function. Know how to find f if given a conservative VF

(Fundamental Thm of Line Integrals): / Vi) -dr= f(B) — f(A)
C

(where C' a curve from A to B)
(Fundamental Theorem of Conservative VFs):
Let D be a simply connected domain in the plane. Then
0Q 0P

F = (P, Q) is conservative on D <= =—|onD
ox dy

« GREEN’S THEOREM
Assumptions needed:
e D simply connected domain in the plane (=open+connected+no holes or punctures)
e 0D = (' the boundary curve is a simple, closed curve oriented positive sense (ie CCW)
o[ = (P, Q) with P, @ continuous partial derivatives inside D and on 0D

THEN ?{ de+Qdy=// (862 — 8P> dA
oD p \ Oz dy

WARNING: F must be defined and differentiable inside D for you to apply Green’s Theorem

« Scalar Curl: S.Curl(F) = %—(i - %3

Meaning: the infinitesimal circulation of F' at the point (z, 1)

« Vector Form of Green’s Theorem: ]{ F(7) - di = // S.Curl(F)dA = // curl(F) - kdA
oD D D

GRADIENT OPERATOR, CURL, & DIVERGENCE

« Del Operators: V = <%, %) in2Dand V = (a%, a@ 2 in3D

« CURL of F: | Curl(F) =V x F |only for 3D F = (P,Q, R)

Cul‘l(F)ZVXF: 9 8@ 8@ :<Ry_QZ7Pz_R:L’7Qx_Py>

NOTE: Curl(F) is clearly a vector!
Geometric Meaning: the circulation at a point through a plane orthogonal to Curl(ﬁ)

« DIVERGENCE of F: | div(F) =V - F

a(F) =V F = (& ) (P.Q) =+ B

(T o 9 0 0 oP 0 OR
div(F) =V - F = (5.4, 5:)  (PQ, R) = a+7§+g.

Geometric Meaning: the contribution of F' in the direction of the “explosion vector field” at a point. This is termed “flux” or
“divergence” of the vector field.



INTEGRATION OVER SURFACES

« Recall Surfaces in space
you can define a surface via a function f : R? — R with z = f(x,v)
you can define a surface implicitly via a function f : R® — R with f(x,y, z) = c (think equation of sphere)

« Given a surface S : z = f(z,v)
Infinitesimal piece of surface area: dA = /1 + (f,)% + (f,)? dzdy
Normal vector to S at a point: 7 = (— f,,, — fy,, 1) (outward pointing)
Recall this comes from: 77 = ﬁ X ﬁ; = (1,0, fz) x (0,1, fy)

i _ <7f17*fy71>

17l 1+ () + (fy)?

Oriented infinitesimal area: dS = ndA = —=f=—fub) g4 — ndxdy so ds = ndxdy
1+ (f2)2+(fy)?

Unit Normal: n =

OR| dS = (—fu,— fy. 1) dudy

- SURFACE INTEGRAL OF F' ACROSS/THROUGH §: [, F - dS.

General //Lgﬁ.dgz//l)ﬁ(xvy)'ﬁdxdy
//Sﬁ'dgz//Dﬁ(%y) (= far = £y, 1) dady

Alternate Form: // (P,Q,R)-dS = // —Pfydx—Qf,dy+ Rdz
S D

Geometric Meaning: “Flux/Divergence” of F across/ through the surface S

STOKE’S THEOREM

« STOKE’S THEOREM
Assumptions needed:
e D and 0D are planar domain and boundary curve that satisfy assumptions of Green’s Theorem
e S and 0S5 is a surface in space of the form z = f(x,y) over the domain D and f(9D) = 05 (this just says that the function f
evaluated over the boundary curve in the plane gives the boundary curve 0.5 of the surface S in space)
e orientation 05 is oriented in the positive sense (the surface is always on your left as you walk around the boundary)
e orientation S is oriented in the positive sense (outward pointing normal vector)

THEN 7§ F(7) - dF = / / Curl(F) - dS
a8 S

Equivalently: % ﬁ(F) Sdr = //(V X F") .dS
as s

or: fgspdﬂcgdwbzdz://S—fw(Ry—QZ)—fy,(Pz—RmH(Qx—Py)dxdy

Geometric meaning: The “circulation/curl” of F along 05S.

FLUX and DIVERGENCE

« FLUX of F ACCROSS C in the Plane: / F - iuds.
c
Geometric meaning: the contribution of F' across/through the curve C. The “flux/divergence” across C.

« Formula for nds:
e parametrize C' with 7(t) = (x(t), y(t))

dz\*  (dy\>
e ds=infinitesimal piece of arclength of the curve C: ds = \/ ( x) + (y) dt

dt dt
e /i = normal vector: outward pointing vector that is orthogonal to the tangent vector 7 (¢)
N <dy dx>
o i=(—,——
dat’  dt
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dy dx
All of imply to: | nds = (—, ——)dt
° of these simply t s = It l’/>

« Alternate form of flux using F'(z,y) = (P, Q): / Fads = / —Qdz + Pdy.
c c

« GREEN/DIVERGENCE THEOREM in the plane: / F-ads = / / (V- F)dady
C D

« GAUSS’ DIVERGENCE THEOREM in space: / / F.dS= / / / (V-Fydv
OFE E

where E is a solid region in space and OF is the surface which is the boundary of £
Note: div(F) = V- F = (£, 2 2) . (P,Q,R) =32 + 52 4+ 91
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