Complete Review

Chapters 12, 13, 14, 15, 16

Notes

Chapter 12: Vectors and the Geometry of Space

- The length of a vector and the relationship to distances between points
- Addition, subtraction, and scalar multiplication of vectors, together with the geometric interpretations of these operations
- Basic properties of vector operations
- The dot product: $\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}$
- Basic algebraic properties
- The geometric meaning of the dot product in terms of lengths and angles: in particular the formula $\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos (\theta)$
- Angle formula: $\theta=\cos ^{-1}\left(\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|\|\vec{w}\|}\right)$
- $\|\vec{a}\|^{2}=\vec{a} \cdot \vec{a}$
- Vector projections: geometric meaning and formulas.

Projection of \vec{b} onto $\vec{a}: \operatorname{comp}_{\vec{a}}(\vec{b})=\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|}$ this is just a length.
There is also the vector version that points along the direction of \vec{a} :
$\operatorname{proj}_{\vec{a}}(\vec{b})=\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^{2}} \vec{a}$ or $\operatorname{proj}_{\vec{a}}(\vec{b})=\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$.

- The cross product: definition and basic properties
- The geometric meaning of the cross product: in particular $\vec{v} \times \vec{w}$ is orthogonal to \vec{v} and \vec{w}, with magnitude $\|\vec{v} \times \vec{w}\|=\|\vec{v}\|\|\vec{w}\| \sin (\theta)$, and direction given by the right-hand rule
- $\|\vec{v} \times \vec{w}\|$ is the area of the parallelogram spanned by \vec{v} and \vec{w}.
- $\vec{u} \cdot(\vec{v} \times \vec{w})$ is the volume of the parallelopiped spanned by \vec{u}, \vec{v} and \vec{w}.
- Tests for Orthogonality:
- \vec{v} and \vec{w} are orthogonal $\Longleftrightarrow \vec{v} \cdot \vec{w}=0$
- \vec{v} and \vec{w} are parallel $\Longleftrightarrow \vec{v} \times \vec{w}=0$
- \vec{u}, \vec{v} and \vec{w} are coplanar $\Longleftrightarrow \vec{u} \cdot(\vec{v} \times \vec{w})=0$

- LINES AND PLANES WITH VECTORS

- Intrinsic description (vectors) vs. Extrinsic description (scalar equations)
- Lines: passage between a vector equation, parametric equations, and symmetric equations
- Vector Eq of a line: $\vec{r}=\vec{P}+t \vec{v}$ (in book $\vec{r}_{0}=\vec{P}$)
- line segment between two points
- Planes: passage between a vector description (a point together with two direction vectors) and a scalar equation
- Vector Eq of a plane: $\vec{n} \cdot \vec{v}=0$ (in book $\left.\vec{r}-\vec{r}_{0}=\vec{v}=\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle\right)$
- Distance from point P and a plane $\mathcal{P}: a x+b y+c z+d=0: D=\operatorname{comp} \vec{n}(\overrightarrow{P Q})$, where Q is any point on \mathcal{P}, or $D=\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}$
- Using vector algebra to solve geometric problems about lines and planes-it is essential that you think geometrically and try to save the number crunching in components for the last moment.
- GEOMETRY OF SURFACES
- Cylinders: know how to spot a "free (missing) variable" to help sketch
- QUADRIC SURFACES: Spheres, Cones, Ellipsoids, Elliptic Paraboloid, Hyperboloid of 1-sheet, Hyperboloid of 2-sheets, Hyperbolic Paraboloid
- Be able to recognize the above either by memorizing their equations or by using intersection with planes as done in class

Chapter 13: Vectors Functions

- Functions $f: X \rightarrow Y$
where set X is domain (=set of inputs), Y is the range (=set of outputs)
- We'll only worry about: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \quad$ with $n, m \geq 1$
- $n=m=1$: real-valued function of a real variable $f: \mathbb{R} \rightarrow \mathbb{R}$
$x \in \mathbb{R}, y \in \mathbb{R}$, usually written $y=f(x)$
Graph is a curve in the plane
- When $Y=\mathbb{R}$: scalar-valued functions
- When $X=\mathbb{R}$ and $Y=\mathbb{R}^{2}$: plane curves or vector-valued functions
$t \in \mathbb{R}, f(t) \in \mathbb{R}^{2}$ usually written $f(t)=\vec{r}(t)=\langle f(t), g(t)\rangle=f(t) \hat{\imath}+g(t) \hat{\jmath}$
Graph is a plane curve moving throughout 2D plane
- When $X=\mathbb{R}$ and $Y=\mathbb{R}^{3}$: space curves or vector-valued functions
$t \in \mathbb{R}, f(t) \in \mathbb{R}^{3}$ usually written $f(t)=\vec{r}(t)=\langle f(t), g(t), h(t)\rangle=f(t) \hat{\imath}+g(t) \hat{\jmath}+h(t) \hat{k}$ Graph is a space curve moving throughout 3D plane
- Line segment from a point P to $Q: \vec{\sigma}(t)=(1-t) P+t Q, t \in[0,1]$
- Sketching space curves, vector-valued functions
- Space Curves/VVFs: limits, continuity, differentiation rules (Theorem 3, p. 858), definite integral
- Example 4 on p. 858, know this proof
- Arclength $=$ length of a curve; $L=\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| d t$

Alternatively, you can use: $L=\int_{a}^{b} \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}+\left(h^{\prime}(t)\right)^{2}} d t$

- unit tangent vector: $\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}$
- Curvature $=$ bending from flat; $\kappa(t)=\frac{\left|\overrightarrow{T^{\prime}}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|}=\frac{\left|\vec{r}^{\prime} \times \vec{r}^{\prime \prime}\right|}{\left|\vec{r}^{\prime}(t)\right|^{3}}$
- TNB Frame: $\vec{T}, \vec{N}, \vec{B}$ all unit length and mutually orthogonal to each other. Hence, making a little "frame":
$\vec{N}(t)=\frac{\vec{T}^{\prime}(t)}{\left|\vec{T}^{\prime}(t)\right|}$ and $\vec{B}(t)=\vec{T}(t) \times \vec{N}(t)$
- Given a space curve $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$, we call $\vec{r}(t)$ the position vector-valued function. The velocity vector-valued function is the derivative of the position function: $\vec{v}(t)=\vec{r}^{\prime}(t)$ and it's speed is the length of the velocity vector: $|\vec{v}(t)|$. It's acceleration VVF is the derivative of the velocity: $\vec{a}(t)=\vec{v}^{\prime}(t)=\vec{r}^{\prime \prime}(t)$.
- Newton's Second Law: $\vec{F}=m \vec{a}$.
- Vector Differential Equations; initial conditions

Chapter 14: Partial Derivatives

- Functions: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \quad$ with $n, m \geq 1$

Now, we will have $n>1$: functions of several variables!

- $n=2, m=1$: Scalar-Valued function of TWO variables
$(x, y) \in \mathbb{R}^{2}, f(x, y) \in \mathbb{R}$
Graph is $z=f(x, y)$
Graph is a surface in space
Domain D is a subset of the plane \mathbb{R}^{2}
Level Curves: $f(x, y)=k$ for k fixed are curves in plane with height fixed-"isotherms"
- $n>3, m=1$: SVFs of three or more variables
$\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \in \mathbb{R}$
Graph: none! Instead need to use other techniques
Level Surfaces: $f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=k$ for k fixed
- Limits: $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ means: "as (x, y) approaches (a, b) along any possible path, the values $f(x, y)$ approach the unique value L."
- Know how to compute limits and to show when limits DNE by using different paths
- Continuity: $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$
- Partial Derivatives: Given $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)$
$\frac{\partial f}{\partial x}(a, b)=\lim _{h t o 0} \frac{f(a+h, b)-f(a, b)}{h}$ the partial derivative of f with respect to x at the point (a, b)
$\frac{\partial f}{\partial y}(a, b)=\lim _{h t o 0} \frac{f(a, b+h)-f(a, b)}{h}$ the partial derivative of f with respect to y at the point (a, b)
BUT: computing them is easy! Just: "pretend the other variable is constant"
- Know the geometry of the partial derivatives as slopes of the appropriate tangent lines
- Implicit Diff with partial derivatives
- Higher partial derivatives: $f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}$, etc
- Clairaut's Theorem: equality of mixed partials is when the second-order partial derivatives are continuous functions
- Tangent Planes: Given $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)$

The tangent plane of f at $P=(a, b, f(a, b))$ is $z=f(a, b)+f_{x}(a, b) \cdot(x-a)+f_{y}(a, b) \cdot(y-b)$
Know how this formula was derived in class with $\vec{n}=\left\langle-f_{x},-f_{y}, 1\right\rangle$

- Linearization: $L(x, y)=f(a, b)+f_{x}(a, b) \cdot(x-a)+f_{y}(a, b) \cdot(y-b)$

When (x, y) is close to (a, b), then $f(x, y) \approx L(x, y)$-that is the linearization is a good approximation of f near P

- f is differentiable at $P=(a, b, f(a, b))$ if the tangent plane exists at P.

Notice: this is stronger than simply requiring that the partial derivatives f_{x} and f_{y} exist at P.
Theorem: if f_{x} and f_{y} are continuous, then f is differentiable

- Differentials:
$d x$ and $d y$ can be any real numbers (usually, $d x=\Delta x=x_{2}-x_{1}, d y=\Delta y=y_{2}-y_{1}$)
Actual change in $z=f(x, y)$ from $P=\left(x_{1}, y_{1}\right)$ to $Q=\left(x_{2}, y_{2}\right)$ is: $\Delta z=z_{2}-z_{1}=f(Q)-f(P)$
Approximate change is given by the differential $d z: d z=f_{x}(a, b) \cdot d x+f_{y}(a, b) \cdot d y$
$d z$ sometimes called the total differential
Works for higher-dimensions too: $d z=f_{x_{1}} \cdot d x_{1}+f_{x_{2}} \cdot d x_{2}+\cdots+f_{x_{n}} \cdot d x_{n}$
- Chain Rule:

Basic chain rule: $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $f(x, y z), g(t): \mathbb{R} \rightarrow \mathbb{R}^{3}$ with $g(t)=\langle x(t), y(t), z(t)\rangle$, then the derivative of $(f \circ g)(t): \mathbb{R} \rightarrow \mathbb{R}$ is

$$
\frac{d}{d t} f(x(t), y(t), z(t))=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}
$$

Tree diagrams are helpful for book-keeping:

- General Chain Rule:

Assume $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a SVF of n variables written $u\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and each $x_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a SVF of m variables written $x_{i}\left(t_{1}, t_{2}, \ldots, t_{m}\right)$ for each $i=1,2, \ldots n$. Then

$$
\frac{\partial u}{\partial t_{j}}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{j}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{j}}+\cdots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{j}}
$$

Notice: in the above formula the t_{j} is the same, but we take all possible partial derivatives of u with respect to the x_{i} 's as i ranges from 1 to n. The tree diagram is helpful:

- Gradient Vector: Given $f(x, y)$ or $f(x, y, z)$ the gradient collects all the partial derivatives into a vector: $\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle$ or $\nabla f(x, y, z)=\left\langle f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right\rangle$
Common notations: $\nabla f=\operatorname{grad}(f)=\operatorname{del}(f)=\partial(f)$
This generalizes easily to higher dimensions
- Directional Derivative:

The directional derivative of f in the direction of the unit vector $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle$ (or $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$):
$D_{\vec{u}}(f)=f_{x}(a, b) \cdot u_{1}+f_{y}(a, b) \cdot u_{2}$ or $D_{\vec{u}}(f)=f_{x}(a, b, c) \cdot u_{1}+f_{y}(a, b, c) \cdot u_{2}+f_{z}(a, b, c) \cdot u_{3}$
This generalizes easily to higher dimensions. We can write it compactly for all dimensions as: $D_{\vec{u}}(f)=\nabla(f) \cdot \vec{u}$

- Maximizing the Directional derivative:
the maximum of $D_{\vec{u}}(f)$ at a point $P=(a, b)$ is given by $|\nabla f(a, b)|$ and occurs when \vec{u} is in the same direction as $\nabla f(a, b)$. the minimum of $D_{\vec{u}}(f)$ at a point $P=(a, b)$ is given by $-|\nabla f(a, b)|$ and occurs when \vec{u} is in the opposite direction as $\nabla f(a, b)$.
- Level Surfaces, Tangent Planes, and Gradients

Given a function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$. Consider it's level surface $S: F(x, y, z)=k$. Then the gradient of F is normal to the tangent plane at a point $P=(a, b, c)$ on the surface S (as long as it's not the zero vector), that is

$$
(\nabla F)(a, b, c,) \cdot \vec{r}^{\prime}\left(t_{0}\right)=0
$$

for any space curve $\vec{r}(t)$ that travels inside the surface S and passes through P at t_{0}.
We can use this to find the equation of the tangent plane: $(\nabla F)(a, b, c) \cdot\langle x-a, y-b, z-c\rangle=0$.

- How is this related to the derivation of the tangent plane we learned earlier?

Previously we started with $z=f(x, y)$ a function of two variables and its graph was a surface S.
We can view it as a function of three variables $F(x, y, z)=z-f(x, y)$ and the surface S is the level surface of F with $k=0$.
From the gradient equation for $F(x, y, z)=z-f(x, y)$:

$$
\begin{aligned}
\nabla F(x, y, z) & =\left\langle\frac{\partial}{\partial x}(z-f(x, y)), \frac{\partial}{\partial y}(z-f(x, y)), \frac{\partial}{\partial z}(z-f(x, y))\right\rangle \\
& =\left\langle-f_{x}(x, y),-f_{y}(x, y), 1\right\rangle
\end{aligned}
$$

This was exactly what we got in section 14.4 where we used $\vec{n}=\vec{f}_{x} \times \vec{f}_{y}=\left\langle 1,0, f_{x}\right\rangle \times\left\langle 0,1, f_{y}\right\rangle$.

- MAX \& MIN VALUES: know the definitions of a local min/local max and global min/global max VALUES of a function f. Know the distinction between the \min / \max value of f and the point where it occurs.
- Critical Points: $P=(a, b)$ is a critical point of f if $\nabla f(a, b)=0$ or DNE. That is, if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$; or if one of f_{x} or f_{x} DNE.
- "Fermat's Theoem:" If f has a local \min / \max at P and f is differentiable at P, then P is a critical point of f
- C^{2} functions = second-order partial derivatives exist and are continuous
- Know: Let $A=f_{x x}(a, b), C=f_{y y}(a, b), B=f_{x y}(a, b)$.

Let $D=A C-B^{2}$ called the discriminant.

- SDT: Second Derivative Test:

Assume: f is C^{2} and $P=(a, b)$ is a critical point of f.

	- if $D>0$ and $A>0$ then $f(a, b)$ is a local MIN value	if $D>0$ and $A<0$ then $f(a, b)$ is a local MAX value	if $D<0$ then $f(a, b)$ is NOT an extremum (saddle point)	if $D=0$ then test fails (anything can happen)
Second Derivative Test				

Note: when $D>0$, then $A C-B^{2}>0$ so $A C>B^{2}>0$. This implies that both A and C have the same sign. So either both $A>0$ and $C>0$ or both $A<0$ and $C<0$. This is why the bending in x and y directions make sense as in the figures above.

- Closed Subsets in the plane: a bounded set that contains all of its boundary points (the analogy of a closed interval in the line)
- Extreme Value Theorem: If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continous and D is a closed subset of the plane, then f attains both an absolute minimum and absolute maximum value at points inside D.
- How to find Absolute Min/Max Values on a closed set D :

Break up D into two parts, $I=$ inside part (open set) of $D, B=$ boundary curve
Step 1: find critical points in $I=$ inside D
$\overline{\text { Step 2: }}$ find the points where f has extreme values in B
To do this: parametrize the boundary curve (in pieces if necessary) with $(x(t), y(t))$, then find the extra of the one-variable function $f(t)=f(x(t), y(t))$ using Calc 1 techniques.
Step 3: Evaluate f at points from Steps 1 and 2 and select the largest and smallest values.

- How to find Extrema on a closed set using Lagrange Multipliers:

Let $f(x, y, z)$ and $g(x, y, z)$ be functions with continuous partial derivatives.
To find the extremum of $f(x, y, z)$ subject to the constraint $g(x, y, z)=c$, solve the equations:

$$
\left\{\begin{array}{l}
\nabla f=\lambda \nabla g \\
g=c
\end{array}\right.
$$

for x, y, z, and λ. That is, we solve: $f_{x}=\lambda g_{x}, f_{y}=\lambda g_{y}, f_{z}=\lambda g_{z}$, and $g=c$.

Summary:

- $d A=$ infinitesimal unit of area:
- Cartesian Coordinates in the plane: $d A=d x d y$
- Polar Coordinates in the plane: $d A=r d r d \theta$
- $d V=$ infinitesimal unit of volume:
- Cartesian Coordinates in space: $d V=d x d y d z$
- Cylindrical Coordinates in space: $d V=r d r d \theta d z$
- Spherical Coordinates in space: $d V=\rho^{2} \sin (\phi) d \rho d \theta d \phi$
- Definition of a double integral as a limit
- Double Integrals of functions $f(x, y)$ over rectangles $R=[a, b] \times[c, d]$ as iterated integrals
- Geometric Interpretation of $\iint_{D} f(x, y) d A$: Volume under the graph of the surface $z=f(x, y)$ (when $f(x, y) \geq 0$) lying above the rectangle R in the plane.
- Fubini's Theorem:

When integrating over a rectangle, you can do the integrals in any order!

$$
\iint_{R} f(x, y) d A=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

- Area a domain D in the plane: $\operatorname{Area}(D)=\iint_{D} 1 d A$.
- Double Integrals over Elementary Domains D in the plane:
- D is Type I:

$$
D:\left\{\begin{array}{l}
a \leq x \leq b \\
g_{1}(x) \leq y \leq g_{2}(x)
\end{array} \quad \Longrightarrow \iint_{D} f d A=\int_{a}^{b}\left[\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right] d x\right.
$$

- D is Type II:
- FACT: if f is continuous on the elementary region D, then the double integral over D exists.
- Be able to compute double integrals of Type I or II fully. But also be able to set-up the correct integrals. Given an integral, be able to read and sketch the domain and switch the order of integration.
- Double Integrals in Polar Coordinates:

Given cartesian coordinates (x, y), the equations for polar coordinates are: $r^{2}=x^{2}+y^{2}$ and $\theta=\tan ^{-1}(y / x)$.
Given polar coordinates (r, θ), the equations for cartesian coordinates are: $x=r \cos (\theta)$ and $y=r \sin (\theta)$.
The infinitesimal unit of area is: $d A=r d r d \theta$

- When D can be easily described by polar coordinates as a sector (circles, quarter circles, annuli, etc):

$$
D:\left\{\begin{array}{l}
a \leq r \leq b \\
\alpha \leq \theta \leq \beta
\end{array} \quad \Longrightarrow \iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos (\theta), r \sin (\theta)) r d r d \theta\right.
$$

or $\int_{a}^{b} \int_{\alpha}^{\beta} f(r \cos (\theta), r \sin (\theta)) r d \theta d r$ by Fubini's Theorem.

- When D is a more general region in PC:

When the "wobbly sector" i.e. $r=h_{1}(\theta)$ is a lower bound for r and $r=h_{2}(\theta)$ is an upper bound for r :

$$
D:\left\{\begin{array}{l}
\alpha \leq \theta \leq \beta \\
h_{1}(\theta) \leq r \leq h_{2}(\theta)
\end{array} \Longrightarrow \iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos (\theta), r \sin (\theta)) r d r d \theta\right.
$$

- Be able to find the area of regions described using PC
- Triple Integrals of $f(x, y, z)$ over boxes $B=[a, b] \times[c, d] \times[r, s]$ using iterated integrals
- Geometric Interpretation of $\iiint_{E} f(x, y, z) d V$: We can't visualize this! The units of this integral are 4-dimensional! It sums up the values of the function $f(x, y, z)$ times the infinitesimal volume $d V$ as (x, y, z) ranges over the solid E in space.
Best way to think of it: $T(x, y, z)$ is temperature at point (x, y, z) in the oven B then $\iiint_{B} T(x, y, z) d V$ is the total temperature inside B.
- Fubini's Theorem:

When integrating over a box, you can do the integrals in any order!

$$
\iiint_{B} f(x, y, z) d V=\int_{a}^{b}\left[\int_{c}^{d}\left[\int_{r}^{s} f(x, y, z) d z\right] d y\right] d x=\int_{a}^{b}\left[\int_{r}^{s}\left[\int_{c}^{d} f(x, y, z) d y\right] d z\right] d x
$$

and equal to any of the other 4 possibilities.

- Volume of a region E in space: $\operatorname{Vol}(E)=\iiint_{E} 1 d V$.
- Triple Integrals over Elementary Regions E in space:
- E is Type I:

$$
E:\left\{\begin{array}{l}
(x, y) \in D \\
u_{1}(x, y) \leq z \leq u_{2}(x, y)
\end{array} \quad \Longrightarrow \iiint_{E} f d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A\right.
$$

then depending on whether D is Type I or Type II:

$$
\begin{aligned}
& \iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A=\int_{a}^{b}\left[\int_{g_{1}(x)}^{g_{2}(x)}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d y\right] d x \quad \text { (D is Type I) } \\
& \iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A=\int_{c}^{d}\left[\int_{h_{1}(y)}^{h_{2}(y)}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d x\right] d y \quad \text { (D is Type II) }
\end{aligned}
$$

- E is Type II:

$$
E:\left\{\begin{array}{l}
(y, z) \in D \\
u_{1}(y, z) \leq x \leq u_{2}(y, z)
\end{array} \quad \Longrightarrow \iiint_{E} f d V=\iint_{D}\left[\int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x\right] d A\right.
$$

then depending on whether D is Type I or Type II:

$$
\begin{aligned}
& \iint_{D}\left[\int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x\right] d A=\int_{c}^{d}\left[\int_{g_{1}(y)}^{g_{2}(y)}\left[\int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x\right] d z\right] d y \quad \text { (D is Type I) } \\
& \iint_{D}\left[\int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x\right] d A=\int_{r}^{s}\left[\int_{h_{1}(z)}^{h_{2}(z)}\left[\int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x\right] d y\right] d z \quad \text { (D is Type II) }
\end{aligned}
$$

- E is Type III:

$$
E:\left\{\begin{array}{l}
(x, z) \in D \\
u_{1}(x, z) \leq y \leq u_{2}(x, z)
\end{array} \quad \Longrightarrow \iiint_{E} f d V=\iint_{D}\left[\int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y\right] d A\right.
$$

then depending on whether D is Type I or Type II:

$$
\begin{aligned}
& \iint_{D}\left[\int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y\right] d A=\int_{a}^{b}\left[\int_{g_{1}(x)}^{g_{2}(x)}\left[\int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y\right] d z\right] d x \quad \text { (D is Type I) } \\
& \iint_{D}\left[\int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y\right] d A=\int_{r}^{s}\left[\int_{h_{1}(z)}^{h_{2}(z)}\left[\int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y\right] d x\right] d z \quad \text { (D is Type II) }
\end{aligned}
$$

- Important examples are to compute the volume of spheres using either Type I, II, or III triple integrals.
- Triple Integrals in Cylindrical Coordinates:

Cylindrical coordinates: (r, θ, z)
Given cartesian coordinates (x, y, z), the equations for cylindrical coordinates are: $x^{2}+y^{2}=r^{2}, \theta=\tan ^{-1}(y / x)$, and $z=z$. Given cylindrical coordinates (r, θ, z), the equations for cartesian coordinates are: $x=r \cos (\theta), y=r \sin (\theta)$, and $z=z$.
The infinitesimal unit of volume is: $d V=r d r d \theta d z$

- When E can be easily described by cylindrical coordinates as a cylinder (or part of):

$$
E:\left\{\begin{array}{l}
a \leq r \leq b \\
\alpha \leq \theta \leq \beta \\
r \leq z \leq s
\end{array} \quad \Longrightarrow \iiint_{E} f(x, y, z) d V=\int_{r}^{s} \int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos (\theta), r \sin (\theta), z) r d r d \theta d z\right.
$$

or in any of the other 5 possible orders of $d r, d \theta, d z$ by Fubini's Theorem.

- When E is a more general region in CC:

Besides cylinders know the equation of cone in CC: $z=r$. So you can describe regions like an "ice cream cone"

- Triple Integrals in Spherical Coordinates:

Spherical coordinates: (ρ, θ, ϕ)
Given cartesian coordinates (x, y, z), the equations for Spherical coordinates are: $\rho^{2}=x^{2}+y^{2}+z^{2}, \theta=\tan ^{-1}(y / x)$, and and $\phi=\cos ^{-1}(z / \rho)$.

Given Spherical coordinates (ρ, θ, ϕ), the equations for cartesian coordinates are: $x=(\rho \sin (\phi)) \cos (\theta), y=(\rho \sin (\phi)) \sin (\theta)$, and $z=\rho \cos (\phi)$.
The infinitesimal unit of volume is: $d V=\rho^{2} \sin (\phi) d \rho d \theta d \phi$

- When E can be easily described by Spherical coordinates as a sphere (or part of):

$$
\begin{aligned}
& E:\left\{\begin{aligned}
a \leq \rho & \leq b \\
\alpha \leq \theta & \leq \beta \\
\delta \leq \phi & \leq \gamma
\end{aligned} \Longrightarrow\right. \\
& \iiint_{E} f(x, y, z) d V=\int_{\delta}^{\gamma} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin (\phi) \cos (\theta), \rho \sin (\phi) \sin (\theta), \rho \cos (\phi)) \rho^{2} \sin (\phi) d \rho d \theta d \phi
\end{aligned}
$$

or in any of the other 5 possible orders of $d \rho, d \theta, d \phi$ by Fubini's Theorem.

- When E is a more general region in SC:

Besides spheres know the equation of cone in CC: $\phi=$ constant. So you can describe regions like an "ice cream cone"

Chapter 16: Vector Calculus

- Vector Fields: a vector field \vec{F} gives a vector (in plane or in space) at every point.

More generally, vector fields are functions: $\vec{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

- VFs in the Plane: $\vec{F}=\langle P, Q\rangle$
$\vec{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \vec{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ where $P, Q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are SVFs.
- VFs in Space: $\vec{F}=\langle P, Q, R\rangle$
$\vec{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \vec{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle$ where $P, Q, R: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are SVFs.
- Visualization of a vector field as a "field of arrows" and interpretation as a force field, or fluid flow
- Important examples: (a) "Explosion" $\vec{F}(x, y)=\langle x, y\rangle$; (b) "Implosion" $\vec{F}(x, y)=-\langle x, y\rangle$; (c) "Circulation" counter-clockwise $\vec{F}(x, y)=\langle-y, x\rangle ;$ (c) "Circulation" clockwise $\vec{F}(x, y)=\langle y,-x\rangle$
- Gradient Vector Fields: $\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$
- Recall: curves in the plane and in space:
$\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ and $d s=\left\|\vec{r}^{\prime}(t)\right\| d t$
since $d s=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t=\left\|\overrightarrow{r^{\prime}}(t)\right\| d t$.
Infinitesimal unit of vector arclength: $d \vec{r}=\vec{T}(t) d s$.
But this is a pain to compute, so instead we use: $d \vec{r}=\vec{r}^{\prime}(t) d t$
- LINE INTEGRAL OF \vec{F} ALONG A CURVE $C: \int_{C} \vec{F} \cdot d \vec{r}$.

General: $\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t \quad$ (Notice: this uses the DOT product!)
In the plane: $\int_{C}\langle P, Q\rangle \cdot d \vec{r}=\int_{C} P d x+Q d y$
Notice: $\vec{F}=\langle P, Q\rangle$ and $d \vec{r}=\vec{r}^{\prime}(t) d t=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle d t$, so computing the dot product gives:
$\vec{F} \cdot d \vec{r}=\langle P, Q\rangle \cdot\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle d t=P x^{\prime}(t) d t+Q y^{\prime}(t) d t=P d x+Q d y$
since $d x=x^{\prime}(t) d t$ and $d y=y^{\prime}(t) d t$
In space: $\int_{C}\langle P, Q, R\rangle \cdot d \vec{r}=\int_{C} P d x+Q d y+R d z$

- Geometric Meaning of a line integral of a vector field along a closed curve C : Circulation of \vec{F} along the curve C
- Know how to parametrize curves: line segments, circles, ellipses, parabolas, squares, triangles, etc
- Properties of curves: orientation, $C_{1} \cup C_{2},-C$ etc
- Properties of Line integrals: $\int_{C_{1} \cup C_{2}} \vec{F}=\int_{C_{1}} \vec{F}+\int_{C_{2}} \vec{F}$ and $\int_{-C} \vec{F}=-\int_{C} \vec{F}$.
- DEFINITIONS/TERMINOLOGY:

Definition of \vec{F} path independent
Curves C: Closed, Simple
Domains D : Open, connected, simply connected
NOTATION: $\partial D=C \quad$ is the notation for the boundary curve of D. It comes with orientation defined by: positive when traveling along the boundary curve, the domain D is on your left side. Negative when traveling along the boundary curve, the domain D is on your right side.

- CONSERVATIVE VECTOR FIELDS

Definition of \vec{F} conservative
THM \vec{F} conservative $\Longleftrightarrow \oint_{C} \vec{F}=0$ for all closed loops
THM \vec{F} conservative \Longleftrightarrow it is the gradient of some function, ie $\vec{F}=\nabla f$
Note: f is called a Potential function. Know how to find f if given a conservative VF
THM (Fundamental Thm of Line Integrals): $\int_{C} \nabla f(\vec{r}) \cdot d \vec{r}=f(B)-f(A)$
(where C a curve from A to B)
THM (Fundamental Theorem of Conservative VFs):
Let D be a simply connected domain in the plane. Then
$\vec{F}=\langle P, Q\rangle$ is conservative on $D \Longleftrightarrow \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ on D

- GREEN'S THEOREM

Assumptions needed:

- D simply connected domain in the plane (=open+connected+no holes or punctures)
- $\partial D=C$ the boundary curve is a simple, closed curve oriented positive sense (ie CCW)
- $\vec{F}=\langle P, Q\rangle$ with P, Q continuous partial derivatives inside D and on ∂D

$$
\text { THEN } \oint_{\partial D} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

WARNING: \vec{F} must be defined and differentiable inside D for you to apply Green's Theorem

- Scalar Curl: S.Curl $(\vec{F})=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$

Meaning: the infinitesimal circulation of \vec{F} at the point (x, y)

- Vector Form of Green's Theorem: $\oint_{\partial D} \vec{F}(\vec{r}) \cdot d \vec{r}=\iint_{D} \mathrm{~S} \cdot \operatorname{Curl}(\vec{F}) d A=\iint_{D} \operatorname{curl}(\vec{F}) \cdot \hat{k} d A$

GRADIENT OPERATOR, CURL, \& DIVERGENCE

- Del Operators: $\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\rangle$ in 2D and $\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle$ in 3D
- CURL of F : $\operatorname{Curl}(\vec{F})=\nabla \times \vec{F}$ only for 3D $\vec{F}=\langle P, Q, R\rangle$
$\operatorname{Curl}(\vec{F})=\nabla \times \vec{F}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R\end{array}\right|=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle$
NOTE: $\operatorname{Curl}(\vec{F})$ is clearly a vector!
Geometric Meaning: the circulation at a point through a plane orthogonal to $\operatorname{Curl}(\vec{F})$
- DIVERGENCE of $F: \operatorname{div}(\vec{F})=\nabla \cdot \vec{F}$
$\operatorname{div}(\vec{F})=\nabla \cdot \vec{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\rangle \cdot\langle P, Q\rangle=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}$.
$\operatorname{div}(\vec{F})=\nabla \cdot \vec{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\langle P, Q, R\rangle=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$.
Geometric Meaning: the contribution of \vec{F} in the direction of the "explosion vector field" at a point. This is termed "flux" or "divergence" of the vector field.

INTEGRATION OVER SURFACES

- Recall Surfaces in space
you can define a surface via a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $z=f(x, y)$
you can define a surface implicitly via a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $f(x, y, z)=c$ (think equation of sphere)
- Given a surface $S: z=f(x, y)$

Infinitesimal piece of surface area: $d A=\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d x d y$
Normal vector to S at a point: $\vec{n}=\left\langle-f_{x},-f_{y}, 1\right\rangle$ (outward pointing)
Recall this comes from: $\vec{n}=\vec{f}_{x} \times \vec{f}_{y}=\left\langle 1,0, f_{x}\right\rangle \times\left\langle 0,1, f_{y}\right\rangle$
Unit Normal: $\hat{n}=\frac{\vec{n}}{\|\vec{n}\|}=\frac{\left\langle-f_{x},-f_{y}, 1\right\rangle}{\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}}}$
Oriented infinitesimal area: $d \vec{S}=\hat{n} d A=\frac{\left\langle-f_{x},-f_{y}, 1\right\rangle}{\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}}} d A=\vec{n} d x d y$ so $d \vec{S}=\vec{n} d x d y$
OR $d \vec{S}=\left\langle-f_{x},-f_{y}, 1\right\rangle d x d y$

- SURFACE INTEGRAL OF \vec{F} ACROSS/THROUGH $S: \iint_{S} \vec{F} \cdot d \vec{S}$.

General: $\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F}(x, y) \cdot \vec{n} d x d y$
$\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F}(x, y) \cdot\left\langle-f_{x},-f_{y}, 1\right\rangle d x d y$
Alternate Form: $\iint_{S}\langle P, Q, R\rangle \cdot d \vec{S}=\iint_{D}-P f_{x} d x-Q f_{y} d y+R d z$
Geometric Meaning: "Flux/Divergence" of \vec{F} across/through the surface S

STOKE'S THEOREM

- STOKE'S THEOREM

Assumptions needed:

- D and ∂D are planar domain and boundary curve that satisfy assumptions of Green's Theorem
- S and ∂S is a surface in space of the form $z=f(x, y)$ over the domain D and $f(\partial D)=\partial S$ (this just says that the function f evaluated over the boundary curve in the plane gives the boundary curve ∂S of the surface S in space)
- orientation ∂S is oriented in the positive sense (the surface is always on your left as you walk around the boundary)
- orientation S is oriented in the positive sense (outward pointing normal vector)

THEN $\oint_{\partial S} \vec{F}(\vec{r}) \cdot d \vec{r}=\iint_{S} \operatorname{Curl}(\vec{F}) \cdot d \vec{S}$
Equivalently: $\oint_{\partial S} \vec{F}(\vec{r}) \cdot d \vec{r}=\iint_{S}(\nabla \times \vec{F}) \cdot d \vec{S}$
Or: $\oint_{\partial S} P d x+Q d y+R d z=\iint_{S}-f_{x}\left(R_{y}-Q_{z}\right)-f_{y},\left(P_{z}-R_{x}\right)+\left(Q_{x}-P_{y}\right) d x d y$
Geometric meaning: The "circulation/curl" of \vec{F} along ∂S.

FLUX and DIVERGENCE

- FLUX of \vec{F} ACCROSS C in the Plane: $\int_{C} \vec{F} \cdot \hat{n} d s$.

Geometric meaning: the contribution of \vec{F} across/through the curve C. The "flux/divergence" across C.

- Formula for $\hat{n} d s$:
- parametrize C with $\vec{r}(t)=\langle x(t), y(t)\rangle$
- $d s=$ infinitesimal piece of arclength of the curve $C: d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
- $\vec{n}=$ normal vector: outward pointing vector that is orthogonal to the tangent vector $\vec{r}^{\prime}(t)$
- $\vec{n}=\left\langle\frac{d y}{d t},-\frac{d x}{d t}\right\rangle$
- $\hat{n}=$ unit normal vector: $\hat{n}=\frac{\vec{n}}{\|\vec{n}\|}=\frac{\left\langle\frac{d y}{d t},-\frac{d x}{d t}\right\rangle}{\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}}$
- All of these simply to: $\hat{n} d s=\left\langle\frac{d y}{d t},-\frac{d x}{d t}\right\rangle d t$
- Alternate form of flux using $F(x, y)=\langle P, Q\rangle: \int_{C} \vec{F} \cdot \hat{n} d s=\int_{C}-Q d x+P d y$.
- GREEN/DIVERGENCE THEOREM in the plane: $\int_{C} \vec{F} \cdot \hat{n} d s=\iint_{D}(\nabla \cdot \vec{F}) d x d y$
- GAUSS' DIVERGENCE THEOREM in space: $\iint_{\partial E} \vec{F} \cdot d \vec{S}=\iiint_{E}(\nabla \cdot \vec{F}) d V$
where E is a solid region in space and ∂E is the surface which is the boundary of E Note: $\operatorname{div}(\vec{F})=\nabla \cdot \vec{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\langle P, Q, R\rangle=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$.

