# What is Multivariable Calculus？ <br> A Brief History of Mathematics and Calculus 

Dr．Jorge Eduardo Basilio<br>Department of Mathematics \＆Computer Science<br>Pasadena City College

Summer 2019

## Outline

## What is

Multivariable Calc？

Dr．Basilio

Outline
（2）The APs
（3）AP solved
（4）Does pi $=4$ ？
（5）Calculus Highlights
（6）What is Calculus III？

Calculus：Latin word for＂pebble＂
－In Roman times：used to count

IIII

## What is

Multivariable Calc？

Dr．Basilio

Outline
Intro
The APs
AP solved
Does pi $=4$ ？
Calculus
Highlights
What is
Calculus III？

## Calculus：Latin word for＂pebble＂

－In Roman times：used to count

－Now：a subject of math that includes tools to solve hard math problems

What is
Multivariable Calc？

Dr．Basilio

## Calculus：Latin word for＂pebble＂


－Now：a subject of math that includes tools to solve hard math problems
－Common answer：＂study of change＂
－Change is encoded by functions
－Change is short for Rates of Change，which is short for Instantaneous Rates of Change

而

## Calculus: Latin word for "pebble"

- In Roman times: used to count

- Now: a subject of math that includes tools to solve hard math problems
- Common answer: "study of change"
- Change is encoded by functions
- Change is short for Rates of Change, which is short for Instantaneous Rates of Change
- My answer: "a PROCESS developed to solve hard problems in the following

What is
Multivariable Calc?

Dr. Basilio steps:"

## Calculus: Latin word for "pebble"

IIII)

- In Roman times: used to count

- Now: a subject of math that includes tools to solve hard math problems
- Common answer: "study of change"
- Change is encoded by functions
- Change is short for Rates of Change, which is short for Instantaneous Rates of Change
- My answer: "a PROCESS developed to solve hard problems in the following

What is
Multivariable Calc?

Dr. Basilio steps:"

- Step 1: find an approximate solution to the hard problem


## Calculus: Latin word for "pebble"

IIIII

- In Roman times: used to count

- Now: a subject of math that includes tools to solve hard math problems
- Common answer: "study of change"
- Change is encoded by functions
- Change is short for Rates of Change, which is short for Instantaneous Rates of Change
- My answer: "a PROCESS developed to solve hard problems in the following steps:"
- Step 1: find an approximate solution to the hard problem
- Step $1 \frac{1}{2}$ : find a better approximate solution, \& then a better one, \& better...


## Calculus: Latin word for "pebble"

IIIII

- In Roman times: used to count

- Now: a subject of math that includes tools to solve hard math problems
- Common answer: "study of change"
- Change is encoded by functions
- Change is short for Rates of Change, which is short for Instantaneous Rates of Change
- My answer: "a PROCESS developed to solve hard problems in the following

What is
Multivariable Calc?

Dr. Basilio steps:"

- Step 1: find an approximate solution to the hard problem
- Step $1 \frac{1}{2}$ : find a better approximate solution, \& then a better one, \& better ...
- Step 2: the exact (ideal) answer = LIMIT of approximate solutions"


## Ancient Problems

What is
Multivariable Calc？

Dr．Basilio
The strategy outlined in the three steps which I call the＂process of calculus＂ solved Ancient Problems

## Ancient Problems

The strategy outlined in the three steps which I call the "process of calculus" solved Ancient Problems

- Ancient Problem 1: Area under a curve (Egypt, Mesopotamia, Greek)


## Ancient Problems

The strategy outlined in the three steps which I call the＂process of calculus＂ solved Ancient Problems
－Ancient Problem 1：Area under a curve（Egypt，Mesopotamia，Greek）
－Ancient Problem 2：Problem of Motion，i．e．Instantaneous Velocity （Greek）

## Ancient Problems

The strategy outlined in the three steps which I call the＂process of calculus＂ solved Ancient Problems
－Ancient Problem 1：Area under a curve（Egypt，Mesopotamia，Greek）
－Ancient Problem 2：Problem of Motion，i．e．Instantaneous Velocity （Greek）
－Ancient Problem 3：What is a（real）Number？（Egypt，Mesopotamia， Greek）

## Ancient Problems

The strategy outlined in the three steps which I call the＂process of calculus＂ solved Ancient Problems
－Ancient Problem 1：Area under a curve（Egypt，Mesopotamia，Greek）
－Ancient Problem 2：Problem of Motion，i．e．Instantaneous Velocity （Greek）
－Ancient Problem 3：What is a（real）Number？（Egypt，Mesopotamia， Greek）
－Ancient Problem 4：Tangent Line Problem（Greek，Europe Middle Ages）

## How were these problems solved?

- Calculus: "a PROCESS developed to solve hard problems in the following steps:'

What is
Multivariable Calc?

Dr. Basilio

- Step 1: find an approximate solution to the hard problem
- Step $1 \frac{1}{2}$ : find a better approximate solution, \& then a better one, \& a better, ETC
- Step 2: the exact (ideal) answer = LIMIT of approximate solutions"
- Open Stewart's "A Preview of Calculus"
- AP1: Area of a circle via Archimedes' "Method of Exhaustion"
- AP4: Tangent Line Problem
- AP2: Instantaneous Velocity
- Limit of a sequence (related to Zeno?s Paradox/AP2 and also irrational numbers/AP3)
- Sum of a series (related to irrational numbers/AP3)

Many different questions, the same approach towards a solution BUT MUST DEAL WITH LIMITS/INFINITY

## A Fear of Infinifty

Infinity has captivated mathematicians, philosophers, and poets like no other concept. It is as alluring as it is wicked.

The rules for how to correctly work with the concept are not obvious (unlike the rules for Euclidean geometry).

Here's two examples showing what can go wrong:

- Zeno's Paradoxes stumped the best minds for thousands of years
- $\pi=4$


## Does $\pi=4$ ？

## Theorem 1：

$\pi=4$

What is
Multivariable Calc？

Dr．Basilio

Start with a circle of radius $R$ ．We first estimate the perimeter by $8 R$ using a circum－ scribed square．Cut out four corners and use the new shorter sides to approximate the perimeter．Notice that the perimeter is still $8 R$ ．Approximate the circle with more and more with sides parallel to axes．The perimeter is still $8 R$ ．Limit of these jagged curves approximates the circle so the limit of these perimeter is the circum－ ference of the circle．Thus，perimeter of full circle is $8 R$ ．Because $C=2 \pi R$ we have $8 R=2 \pi R$ ．We conclude： $4=\pi!$

## Outline

## Intro

The APs
AP solved

Does $p i=4$ ？
Calculus
Highlights
What is


Perimeter＝8R


Perimeter $=8 \mathrm{R}$


## Does $\pi=4$ ？

Of course this is wrong！

There＇s a flaw in this argument that＇s very difficult to catch．


Does $p i=4$ ？
Calculus
Highlights
What is
Calculus III？

## Calculus Highlights

## Briefly: Two branches of Calculus

(1) Differential Calculus (derivatives: local to global)

## What is

- $f^{\prime}(x)=\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- Applications: slope of a curve (tangent line), approximating a function
(2) Integral Calculus (integrals: infinite sums)
- $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x\right)$
- Applications: area under a curve, solving differential equations, volumes of solids of revolutions, arclength of a function
Both made possible thanks to limits


## Calculus Highlights

## THEMES

- Derivative Rules: short-cuts to limits
- Techniques for integration: short-cuts to limits
- Linearization: approximating a curve with the tangent line (="line of best fit")
- Min/Max Problems: Optimization
- Using integrals for geometry: lengths, areas, volumes
- Calculus: transform difficult non-linear problems into easier linear problems!!!!
- As an example: using Euler's method for solving differential equations.


## Euler's Method: Solve $\frac{d y}{d x}=F(x, y)$.

## Euler's Method

- Approximate solutions to DE with line segments using the tangent line approximations where the slopes are given by $m=y^{\prime}=F(x, y)$
- Starting at the initial conditions, $P_{0}=\left(x_{0}, y\left(x_{0}\right)\right)$, construct the tangent line $L_{0}(x)$ with point $P_{0}$ and slope $m=F\left(x_{0}, y_{0}\right)$
- We move along this line by taking a step of size $h$ to arrive at a new point $P_{1}=\left(x_{1}, y_{1}\right)$.
- Once we're at $P_{1}$ we use the slope $F\left(x_{1}, y_{1}\right)$ to construct a new tangent line $L_{1}(x)$
- Move along $L_{1}(x)$ by taking another step of size $h$ to arrive at $P_{2}$
- Do this as many times as needed


What is
Multivariable Calc?

Dr. Basilio

Outline
Intro
The APs
AP solved
Does pi $=4$ ?
Calculus
Highlights
What is
Calculus III?

## Calculus Highlights

## Definition 1: Definite Integrals

- Start with a continuous function $f$ on a closed interval $[a, b]$


## What is

Multivariable Calc?

Dr. Basilio

- Choose $n \geq 1$. Cut $[a, b]$ into $n$ equal pieces: $\Delta x=\frac{b-a}{n}$.
- Create subintervals $I_{i}=\left[x_{i-1}, x_{i}\right]$ using $x_{i}=a+i \Delta x$.
- Either pick a random $c_{i} \in\left[x_{i-1}, x_{i}\right]$ (or more systematically, like left-endpoints, midpoints, etc).
- The area of each sub-rectangle is $f\left(c_{i}\right) \Delta x$. For $\Delta x$ small, these approximate the area under the graph of $f$.
- Sum the approximations: $\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x$.
- The exact area is the limit: $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x$


## Calculus Highlights

What is
Multivariable

## Theorem 2: Fundamental Theorem of Calculus

Outline
Part 1 If $f$ is a continuous function on the closed interval $[a, b]$, then

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Part 2 If $f$ is defined on an interval $I$ and $F$ is an anti-derivative $F$ of $f$ also defined on $I$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

## Calculus Highlights

## Remarks

- Part 1 This says: the derivative of an integral of a function is the same as the original function.
Or: "they undo each other!" Or: "the derivative and the integral are inverse operations" (like + and -)
- Part 2 This is extremely useful for computations! Since we know a bunch of derivative rules, we can find anti-derivatives for many functions easily.
Another reason why Part 2 is so useful-we complete skip over the true definition of an integral! We avoid hard limits and Riemann sums altogether! Horray!


## Calculus Highlights

## Integration Toolbox

When confronted with an integral， $\int f(x) d x$ ，the main tools in your integra－ tion toolbox are：
（1）know a lot of derivative rules／anti－derivative rules！
（2）u－substitution（corresponds to the chain rule）
（3）integration by parts（corresponds to the product rule）
（4）trigonometric substitution
Additional techniques：
（1）Strategies for $\sin ^{n}(x) \cdot \cos ^{m}(x)$
（2）Partial Fractions
（3）Miscellaneous algebra manipulations Note：sometimes this is＂step 0 ＂

## What is Calculus III?

## Calculus III:

- redo all of precalculus (analytic geometry) in 2D, 3D, and Higher-dimensions
- redo all of differential calculus
in 2D, 3D, and Higher-dimensions
- redo all of integral calculus
in 2D, 3D, and Higher-dimensions
- And study applications: linearization, min/max/optimization
- NEW!! Vector Analysis: new types of derivatives and integrals with applications to physics and engineering


## What is Calculus III?

## Overview \& Goals

## What is

Multivariable Calc?

Dr. Basilio volumes in space
(4) Vector Calculus

- Curves and Surfaces in vector notation. Vector-valued functions, Vector fields
- Line integrals, surface integrals with direction ("orientation")


## What is Calculus III?

## Functions in several variables

- Recall ordinary function: $f(x)$. This means: given an input $x \in \mathbb{R}, f(x)$ is a new real number called the output. Ex: $f(x)=x^{2}, f(-2)=4$.
- How to generalize to several variables? Lots of ways to do this!
- Way \#1: "scalar functions:" many inputs, one output. Graph is a surface in space.
Ex: $f(x, y)=x^{2}+y^{2} . f(-2,1)=(-2)^{2}+(1)^{2}=5$. Input: $(-2,1)$, output:5
- Way \#2: "space curves:" one input, many outputs. Graph is a space curve.
Ex: $\vec{f}(t)=\langle\cos (t), \sin (t), t\rangle$. Input: $t$, outputs: $x=\cos (t)$, $y=\sin (t), z=t$
- Way \# 3: "vector-valued functions" (or "vector fields") many inputs, many outputs.
Ex: $\vec{f}(x, y)=\langle-y, x\rangle$. Inputs: $(x, y)$. Outputs: $x=-y, y=x$


## What is Calculus III?

## Functions in several variables

- Summary: $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $n \geq 1$ and $m \geq 1$.
$\vec{f}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\langle f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\rangle$
- Way \#1: $m=1$. "scalar functions" many inputs, one output. Graph is a surface in space.
- Way \#2: "space curves:" $n=1, m>1$. one input, many outputs. Graph is a curve in space.
- Way \# 3: "vector-valued functions" $n>1, m>1$. many inputs, many outputs.

Don't worry! We'll focus on 2D and 3D so only 3 variables (most of the time :P)

