Chapter 10: Correlation and Regression

Section 10.1: Correlation

CORRELATION

Def A correlation exists between two variables when the values of one variable are somehow associated with the values of the other variable.

EXPLANATORY VS RESPONSE VARIABLE

Def Explanatory Variable

Def Response Variable

The way to distinguish the difference between these two variables is by asking, "Which statement makes sense?"

Ex: A researcher wants to examine whether babies fed on breast milk are more or less likely to be ill.

(a) Feeding a baby on breast milk	(b) Resistance to dise	ease causes a baby to feed
causes resistance to disease.	on breast milk.	
Can you identify which variable is which?	- presence or absence of breast milk	- resistance to disease

<u>Ex</u>: Identify the explanatory and response variables in the following examples.

(a) An experiment was conducted to test the effects of sleep deprivation on human response times.

(b) Researcher Penny Gordon Larson and her associate wanted to determine whether young couples who marry or cohabitate are more likely to gain weight than those who stay single.

SCATTERPLOTS

Def A scatterplot is a plot of paired (x, y) quantitative data. Note: A scatter diagram is often helpful in determining whether there is a relationship between the two variables.

correlation is expressed by two features:

STRENGTH –	DIRECTION –

The strength of the linear correlation is represented by a numerical value called the

PROPERTIES OF THE LINEAR CORRELATION COEFFICIENT

- 1. The value of r is always between -1 and 1, inclusive. $-1 \le r \le 1$
- 2. The value of r does not change if all values of either variable are converted to a different scale.
- 3. r measures the strength of a linear relationship only. (It does not measure nonlinear relationships.)

*Note: Correlation does not imply

Ex: Choose from the following word bank to determine the features of each scatter plot below.

EXPLAINED VARIATION

The value of r^2 is the proportion of the variation in y that can be explained by the linear relationship between x and y.

Different samples will produce different scatterplots, and thus, different r values.

Our job is to take a large enough sample to get close to the *true* population linear correlation coefficient called _____.

We are going to assume there is no correlation ($\rho =$ ____) and try to prove otherwise based on our sample.

Steps for Hypothesis Test when Applied to testing $ ho$										
Check Re	quirements	S	tep 1: Hypothese	<i>2S</i>			Step 2: 1	Level of		
• Simple]	Random Samp	ole	$H_0: \rho =$	Significa	ince					
• Visual e	examination sh	nows	$H_1: \rho \neq$	0 (there is a	linear correla	ation)				
straight lin	ne pattern									
• Remove	e any outliers									
Step 3: Te	est Statistic									
				$t_0 = \frac{r}{\sqrt{\frac{1 - r^2}{df}}}$	-	where $df =$	n – 2			
Step 4: F	ind a Critica	l Value or I	P-Value							
P-VALU	e Method		DE	CISION		$\begin{cases} Reject H_0 \sim \text{ if} \\ Fail \text{ to Reject } H \end{cases}$	$P\text{-value} \leq \alpha$ ~ if P-valu	$e > \alpha$		
			<u>p-value</u> 2	r t	value 2					
CRITIC	AL VALUE M	ETHOD	DE	CISION	∫ Reje	$\begin{cases} Reject H_0 \sim \text{ if } r^* \text{ lies in the critical region} \\ Fail to Paiget H_{out} \text{ if } r^* \text{ doesn't lie in the critical region} \end{cases}$				
$\begin{bmatrix} Fail to Reject H_0 ~ if r' doesn't lie in the critical restricted restristicted restricted restricted restricted rest$							lue			
<i>Step 5:</i> V	Vrite a CONC	<i>LUSION</i> eit	ther rejecting or	failing to reje	ect H_0					
п	$\alpha = .05$	<i>α</i> = .01	п	<i>α</i> = .05	<i>α</i> = .01	п	<i>α</i> = .05	<i>α</i> = .01		
4	.950	.990	16	.497	.623	70	.236	.305		
5	.878	.959	17	.482	.606	80	.220	.286		
6	.811	.917	18	.468	.590	90	.207	.269		
7	.754	.875	19	.456	.575	100	.196	.256		
8	.707	.834	20	.444	.561	Critical Valu	ues of the	Pearson		
9	.666	.798	25	.396	.505 Correlation Coefficient r					
10	.632	.765	30	.361	.463	GRAPHIN	g Cal cu			
11	.602	.735	35	.335	.430	(TI-83 OF	84)			
12	.576	.708	40	.312	.402					
			45	204	270	Instruction	15:			

45

50

60

13

14

15

.553

.532

.514

.684

.661

.641

.294

.279

.254

.378

.361

.330

STAT \Rightarrow TESTS \Rightarrow LinRegTTest

_____i

Ex: The following table gives information on average saturated fat (in grams) consumed per day and cholesterol level (in milligrams per centiliters) of ten men taken from a simple random sample.

	1	2	3	4	5	6	7	8	9	10
Fat Consumption (in grams)	55	68	50	34	43	58	77	36	60	39
Cholesterol level (in mg/cL)	180	215	195	165	170	204	235	150	190	185

Use a 0.01 significance level to determine if there is a linear correlation between saturated fat consumption and cholesterol level.

Null and Alternative Hypothesis

Test Statistic

P-value:

Critical Value:

Decision about Null Hypothesis

Conclusion

Ex: The following table gives the total 2004 payroll (on the opening day of the season, rounded to the nearest million dollars) and the percentage of games won in 2004 by each National League team.

	D'backs	Braves	Cubs	Reds	Rockies	Marlins	Astros	Dodgers
Payroll (in millions)	70	90	91	47	65	42	75	93
Percentage of Wins	31.5	59.3	54.9	46.9	42.0	51.2	56.8	57.4
	Brewers	Expos	Mets	Phillies	Pirates	Cards	Padres	Giants
Payroll (in millions)	28	41	97	93	32	83	55	82
Percentage of Wins	41.6	41.4	43.8	53.1	44.7	64.8	53.7	56.2

Use a 0.05 significance level to determine if there's a correlation between payroll and percentage of games won.

Null and Alternative Hypothesis

Test Statistic

P-value:

Critical Value:

Decision about Null Hypothesis

Conclusion

REGRESSION

Def Given a collection of paired sample data, the **regression equation** $\hat{y} = b_0 + b_1 x$ algebraically describes the relationship between the two variables.

Note: The graph of the regression equation is called the regression line or line of best-fit

TERMINOLOGY

x is referred to as the explanatory variable, predictor variable, or the independent variable.

y is referred to as the response variable or the dependent variable.

The line that minimizes the distance between the points and the line. It
the data points.
$\hat{v} = h_1 + h_2 x$, where the point (\bar{x}, \bar{y}) will always be on the least-squares line
y = 0 $y = 0$ $y = 0$ where the point (x, y) will always be on the reast squares line.
$b_1 = b_0 =$

FORMULAS

Slope $b_1 = r \cdot \frac{s_y}{s_y}$	y-intercept	$b_0 = \overline{y} - b_1 \overline{x}$
---------------------------------------	-------------	---

Round-Off Rule: Round the slope and y-intercept to three significant digits.

Ex: Below is a sample of five patients at a hospital with the information regarding their height and weight.

(a) Describe the relationship of the data using the scatterplot given.

(b) Find the correlation coefficient/test statistic and determine whether a correlation exists.

(c) Find the line of best fit and sketch it below.

(c) Interpret the slope.

Interpretation of slope: For every <u>unit</u> increase in the <u>explanatory variable</u>, on average, there is an <u>increase/decrease</u> of "slope" units on the <u>response variable</u>.

Interpretation of *y***-intercept**: When the <u>explanatory variable</u> is 0 units, on average, the <u>response variable</u> is ______ units.

GRAPHING CALCULATOR (TI-83 OR 84)

Instructions: STAT \Rightarrow TESTS \Rightarrow LinRegTTest

Ex: Recall the exercise from the last section in which we concluded there was a significant linear correlation between the average saturated fat consumed per day and the cholesterol level of ten men.

	1	2	3	4	5	6	7	8	9	10
Fat Consumption (in grams)	55	68	50	34	43	58	77	36	60	39
Cholesterol level (in mg/cL)	180	215	195	165	170	204	235	150	190	185

- (a) Find the regression equation where x is the average daily fat consumption (in grams) of a man and y is the cholesterol level (in mg/cL).
- (b) Interpret the slope in the context of the problem.
- (c) Predict the cholesterol level of a man who consumes 65 grams of saturated fat per day.

PREDICTIONS

If there is a significant linear correlation between <i>x</i> and <i>y</i> , then use the	to predict the
value of y given a specific value of x .	

If there is no significant linear correlation between x and y, then the best prediction of y is the ______ for any given value of x.

Ex: Are fat and sodium content related in fast food? Here are the fat and sodium content for several brands of burgers.

	1	2	3	4	5	6	7
Fat (in grams)	19	31	34	35	39	39	43
Sodium(mg)	920	1500	1310	860	1180	940	1260

Use a 0.05 significance level to determine if there is a linear correlation between fat and sodium content in burgers. *Null and Alternative Hypothesis*

Test Statistic (or correlation coefficient)

P-value :

Critical Value:

-1 1

Decision

Conclusion

(a) What is the regression equation? Is it helpful in this situation? Why or why not?

(a) Predict the sodium level of a burger with 25 grams of fat.

GRAPHING CALCULATOR (TI-83 OR 84)

To create and view a Scatterplot and Linear Regression Line

Instructions:

1) $2^{nd} \Rightarrow 0$ (catalog) \Rightarrow DiagnosticOn \Rightarrow Enter

2) STAT \Rightarrow EDIT (enter 1st Variable in L₁ and 2nd Variable in L₂)

3) STAT \Rightarrow CALC \Rightarrow 4: LinReg (ax + b) \Rightarrow Store RegEQ: \Rightarrow Vars \Rightarrow Y-Vars \Rightarrow 1: Function \Rightarrow 1: $Y_1 \Rightarrow$ Calculate 4) $2^{nd} \Rightarrow y = \Rightarrow$ 1: Plot1 \Rightarrow On \Rightarrow Zoom \Rightarrow 9: ZoomStat