# Chapter 4: Probability

Section 4.1: Basic Concepts of Probability

*Def* **Probability** – a numerical measure of the \_\_\_\_\_\_ that a specific event will occur.



# TERMINOLOGY

- 1. An event is any collection of results (or outcomes) of a procedure.
- 2. A **simple event** is an outcome that cannot be further broken down into simpler components.
- 3. The **sample space** for a procedure consists of all possible simple events.

# NOTATION

| Symbol  | Represents                       |  |  |
|---------|----------------------------------|--|--|
| Р       | probability                      |  |  |
| A, B, C | specific events                  |  |  |
| P(A)    | probability of event A occurring |  |  |

Ex: A probability experiment consists of rolling a single six-sided *fair* die.

(a) Determine the sample space. (b) What is P(5)?

(c) What is *P(even)*?

# Important Notes

- 1. For any event A,  $0 \le P(A) \le 1$ .
- 2. The probability of an impossible event is zero.
- 3. The probability of an event that is certain to occur is one.
- 4. If necessary, round probabilities to three significant digits.

*Def* **Unusual Events** An event that has a low probability. *Typically, an event with less than* \_\_\_\_% *is considered unusual, but it depends on the problem.* 

| <b>Relative Frequency Probability</b> :<br><i>Based on data</i> .<br>Formula:                                                                                                                                               | Classical Probability: Based on<br>(hypothetical) equally likely<br>outcomes.<br>Formula:           | <b>Subjective Probability:</b> The probability of event A is found by simply guessing or estimating its value based on knowledge of the relevant circumstances. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Relative Frequency:</b> 200 million<br>people are affected each year by<br>malaria, a disease carried by<br>mosquitos. 600,000 of those people<br>die. What is the probability that<br>someone affected by malaria dies? | <i>Classical:</i> When two children are born, what's the probability that both are the same gender? | <i>Subjective:</i> What is the probability that the next dollar bill you spend was previously spent by Beyoncé?                                                 |

 $\underline{Ex}$ : A bag has 1 red marble, 1 blue marble, 1 yellow marble, 1 orange marble, and 1 purple marble. The table below shows the results of choosing a marble out of the bag and replacing it each trial. Give answers as decimals and percentages.

(a) Find the relative frequency probability of drawing a yellow or an orange for the 100 trials.

| Outcome of<br>the Draw | 100 trials | 600 trials |
|------------------------|------------|------------|
| Red                    | 33         | 120        |
| Blue                   | 24         | 121        |
| Yellow                 | 18         | 119        |
| Orange                 | 17         | 122        |
| Purple                 | 8          | 118        |

(b) Find the relative frequency probability of drawing a marble that is not red for 100 trials.

(c) Find the relative frequency probability of drawing a blue for the 100 trials.

(d) Find the relative frequency probability of drawing a blue for the 600 trials.

(e) What is the classical probability of choosing a blue?

*Def* The complement (denoted  $\overline{A}$ ) of event A, consists of all outcomes in which event A doesn't occur.

# THE LAW OF LARGE NUMBERS

As a procedure is repeated again and again, the relative frequency probability of an event tends to approach the actual probability.

# Section 4.2: Addition Rule and Multiplication Rule

## COMPOUND EVENTS

*Def* A compound event is any event combining two or more simple events.

NOTATION: P(A or B) denotes the probability that event A occurs or event B occurs (or both.)

| FORMAL ADDITION RULE |                                                                                                                                                                        |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Symbolic             | P(A  or  B) = P(A) + P(B) - P(A  and  B)                                                                                                                               |  |  |
| Meaning              | The probability of event A or event B is the sum of each event's probability of occurring individually, minus the probability of both events occurring simultaneously. |  |  |
| Note                 | P(A  and  B) denotes the probability that A and B both occur at the same time.                                                                                         |  |  |

#### IMPORTANT NOTE

*Def* Two events are **disjoint** (or **mutually exclusive**) if they cannot occur at the same time.

Note: If events A and B are mutually exclusive  $\Rightarrow P(A \text{ and } B) = 0$ .

Can a

| If YES                                  |
|-----------------------------------------|
|                                         |
| Not Disjoint Events have <u>Overlap</u> |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |

be a

?

Ex: Determine whether the following are disjoint events.

**EX**: Let P(E) = .11, P(F) = .78, P(G) = .56, P(F and G) = .6, and events *E* and *F* are disjoint. (a) Find P(F or G) (b) Find P(E or F) Ex: Suppose that a single card is selected from a standard 52-card deck, such as shown below.

(a) What is the probability that the card drawn is a king?

(b) What is the probability that the card drawn is a king or a queen?

(c) What is the probability that the card drawn is a Jack or a red?

(d) What is the probability that the card is an odd number or a heart?

Ex: A study of 1,000 recently deceased people is summarized in the following table.

|             |          | Cause of Death |          |          |
|-------------|----------|----------------|----------|----------|
|             | Cancer   | Heart Disease  | Other    |          |
| Smokers     | 100      | 180            | 120      | $\sum =$ |
| Non-smokers | 100      | 120            | 380      | $\sum =$ |
|             | $\sum =$ | $\sum =$       | $\sum =$ |          |

Find the probability of randomly selecting:

(a) someone who died of cancer.

(b) someone who did not die of cancer.

(c) someone who died of heart disease and cancer. (d) someone who died of heart disease or cancer.

(e) someone who smoked or died of heart disease.



#### COMPOUND EVENTS

*Def* A compound event is any event combining two or more simple events.

NOTATION: P(A and B) denotes the probability that event A occurs in the 1<sup>st</sup> trial followed by the occurrence of event B in the 2<sup>nd</sup> trial.

| FORMAL MULTIPLICATION RULE |                                                                                                                                  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Symbolic                   | $P(A \text{ and } B) = P(A) \cdot P(B \mid A)$                                                                                   |  |  |
| Meaning                    | The probability of event A followed by event B is found by multiplying the probability of event A by the probability of event B. |  |  |
| Note                       | $P(B \mid A)$ denotes the conditional probability of event B occurring after it is assumed that event A has already occurred.    |  |  |

#### INDEPENDENCE VS. DEPENDENCE

- *Def* Two events are **independent** if the occurrence of one event does not affect the probability of the occurrence of the other event.
- Note: If events A and B are independent  $\Rightarrow P(B | A) = P(B)$ . If events A and B are independent  $\Rightarrow P(A | B) = P(A)$ .
- Def If two events are not independent, they are said to be **dependent**.

SUMMARY: 
$$P(A \text{ and } B) \xrightarrow{P(A) \cdot P(B \mid A)} (\text{if } A \text{ and } B \text{ are dependent})$$
  
=  $P(A) \cdot P(B)$  (if  $A$  and  $B$  are independent)

# **<u>Ex</u>**: Independent events? Why or why not?

| (a) $A =$ You find a parking spot $B =$ First week of school | (b) $C$ = You pass your class $D$ = Good food at the Piazza |
|--------------------------------------------------------------|-------------------------------------------------------------|
|                                                              |                                                             |
|                                                              |                                                             |
|                                                              |                                                             |

Ex: A bag contains an assortment of Jolly Rancher candies. Specifically, there are 5 apple, 8 watermelon, 10 cherry, and 15 grape flavored candies. You get to randomly select three candies without replacement.

(a) Find the probability of picking three grape Jolly Ranchers.

(b) Find the probability of not getting any apple Jolly Ranchers.

**EX**: In the table is the highest level of education information for 50 applicants for a job.

| Bachelor's Degree | 35 |
|-------------------|----|
| Master's Degree   | 15 |

(a) If two of these fifty applicants names are chosen at random, without replacement, then what is the probability that the 1<sup>st</sup> selected has a Bachelor's degree and the 2<sup>nd</sup> has a Master's degree?

(b) What would the probability in (a) be if replacement was allowed?

#### THE 5% GUIDELINE FOR CUMBERSOME CALCULATIONS

If a sample size is no more than 5% of the size of the population, treat the selections as being independent.

EX: A quality control analyst randomly selects 3 different car ignition systems from a manufacturing process that has just produced 200 systems, including 5 that are defective.

(a) What is the probability that all 3 ignition systems are good?

(b) Use the 5% guideline for treating the events as independent, and find the probability that all 3 ignition systems are good.

# COMPLEMENTS: THE PROBABILITY OF "AT LEAST ONE"

 $\mathcal{D}ef$  The complement (denoted  $\overline{A}$ ) of event A, consists of all outcomes in which event A doesn't occur.

Note:  $P(\overline{A}) = 1 - P(A) \implies P(at \ least \ one) = 1 - P(none)$ 

<u>Ex</u>: Let's say that for the next seven days, the probability of rain is 5%. Assume each the chance of rain each day is independent. What is the probability that it rains *at least one day* over the next seven days.

*The Sane Way... What's the complement* of at least one day of rain?

<u>Ex</u>: A bag contains an assortment of Jolly Rancher candies. Specifically, there are 5 apple, 8 watermelon, 10 cherry, and 15 grape flavored candies. You get to randomly select three candies without replacement. Find the probability of getting at least one watermelon.

 $\underline{Ex}$ : A satellite defense system has five independent satellites that each have a 0.92 chance of detecting a missile threat.

(a) What's the probability that at least one satellite does detect a missile threat?

(b) What's the probability that at least one satellite does not detect a missile threat?

#### CONDITIONAL PROBABILITY

Ridiculously LONG way...

- $\mathcal{D}$ ef A conditional probability of an event is a probability obtained with the additional information that some other event has already occurred.
- NOTATION:  $P(B \mid A)$  denotes the conditional probability that event B occurs, given that event A has already occurred.

FORMULA:  $P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$ 

**Ex**: Let A =Today is your birthday and B =Your birthday is in this month. (a) Are events A and B dependent? (b) P(A)

(c) 
$$P(A|B)$$
 (d)  $P(B|A)$ 

Ex: The following table gives the mortality data for passengers of the Titanic.

|          | Men      | Women    | Children |            |
|----------|----------|----------|----------|------------|
| Survived | 332      | 318      | 56       | $\Sigma =$ |
| Died     | 1360     | 104      | 53       | $\Sigma =$ |
|          | $\sum =$ | $\sum =$ | $\sum =$ |            |

Find the probability of randomly selecting:

(a) a passenger who died, given that the person was a man.

- (b) a woman, given that the passenger survived.
- (c) a survivor, given that the passenger was a child.

Ex: The table to the right shows the status of 200 registered college students.

| (a) What is the probability that a part time student is female? |  |
|-----------------------------------------------------------------|--|
|-----------------------------------------------------------------|--|

|        | Part | Full | Total |
|--------|------|------|-------|
|        | Time | Time |       |
| Female | 80   | 40   | 120   |
| Male   | 60   | 20   | 80    |
| Total  | 140  | 60   | 200   |

(b) What is the probability that a randomly selected student is part time, given that they are a male?

(c) What is the probability that a randomly selected female is a full time student?