Formulas and Tables by Mario F. Triola

Copyright 2018 Pearson Education, Inc.

Ch. 3: Descriptive Statistics	Ch. 7: Confidence Intervals (one population)
$\bar{x} = \frac{\sum x}{n} \text{Mean}$ $\bar{x} = \frac{\sum (f \cdot x)}{\sum f} \text{Mean (frequency table)}$ $s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}} \text{Standard deviation}$ $s = \sqrt{\frac{n (\sum x^2) - (\sum x)^2}{n (n - 1)}} \text{Standard deviation (shortcut)}$ $s = \sqrt{\frac{n [\sum (f \cdot x^2)] - [\sum (f \cdot x)]^2}{n (n - 1)}} \text{Standard deviation}$ $rac{\text{standard deviation}}{r (n - 1)} \text{(frequency table)}$ $rac{\text{variance}}{r = s^2}$	$\hat{p} - E where E = z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}} \overline{x} - E < \mu < \overline{x} + E \text{Mean} where E = t_{\alpha/2} \frac{s}{\sqrt{n}} (\sigma \text{ unknown}) or E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} (\sigma \text{ known}) \frac{(n-1)s^2}{\chi_R^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_L^2} \text{Variance}$
Ch. 4: Probability $P(A \text{ or } B) = P(A) + P(B) \text{if } A, B \text{ are mutually exclusive}$ $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$ $\text{if } A, B \text{ are not mutually exclusive}$ $P(A \text{ and } B) = P(A) \cdot P(B) \text{if } A, B \text{ are independent}$ $P(A \text{ and } B) = P(A) \cdot P(B A) \text{if } A, B \text{ are dependent}$ $P(\overline{A}) = 1 - P(A) \text{Rule of complements}$ ${}_{n}P_{r} = \frac{n!}{(n-r)!} \text{Permutations (no elements alike)}$ $\frac{n!}{n_{1}! n_{2}! \dots n_{k}!} \text{Permutations } (n_{1} \text{ alike}, \dots)$ ${}_{n}C_{r} = \frac{n!}{(n-r)! r!} \text{Combinations}$	$n = \frac{ z_{a/2} ^2 0.25}{E^2} \text{Proportion}$ $n = \frac{ z_{a/2} ^2 \hat{p} \hat{q}}{E^2} \text{Proportion } (\hat{p} \text{ and } \hat{q} \text{ are known})$ $n = \left[\frac{z_{a/2}\sigma}{E}\right]^2 \text{Mean}$ Ch. 8: Test Statistics (one population) $z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} \text{Proportion-one population}$ $t = \frac{\bar{x} - \mu}{2} \text{Mean-one population } (\sigma \text{ unknown})$
Ch. 5: Probability Distributions	$\frac{3}{\sqrt{n}}$
$\mu = \Sigma[x \cdot P(x)] \text{Mean (prob. dist.)}$ $\sigma = \sqrt{\Sigma[x^2 \cdot P(x)] - \mu^2} \text{Standard deviation (prob. dist.)}$ $P(x) = \frac{n!}{(n-x)! x!} \cdot p^x \cdot q^{n-x} \text{Binomial probability}$ $\mu = n \cdot p \text{Mean (binomial)}$ $\sigma^2 = n \cdot p \cdot q \text{Variance (binomial)}$ $\sigma = \sqrt{n \cdot p \cdot q} \text{Standard deviation (binomial)}$ $P(x) = \frac{\mu^x \cdot e^{-\mu}}{x!} \text{Poisson distribution where}$ $e = 2.71828$ Ch. 6: Normal Distribution $z = \frac{x - \mu}{r} \text{ or } \frac{x - \overline{x}}{r} \text{Standard score}$	$z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$ Mean—one population (σ known) $\chi^{2} = \frac{(n-1)s^{2}}{\sigma^{2}}$ Standard deviation or variance— one population

Formulas and Tables by Mario F. Triola Copyright 2018 Pearson Education, Inc.

Ch. 9: Confidence Intervals (two populations)	Ch. 10: Linear Correlation/Regression
$\begin{aligned} (\hat{p}_{1} - \hat{p}_{2}) - E < (p_{1} - p_{2}) < (\hat{p}_{1} - \hat{p}_{2}) + E \\ \text{where } E = z_{\alpha/2} \sqrt{\frac{\hat{p}_{1}\hat{q}_{1}}{n_{1}} + \frac{\hat{p}_{2}\hat{q}_{2}}{n_{2}}} \\ (\bar{x}_{1} - \bar{x}_{2}) - E < (\mu_{1} - \mu_{2}) < (\bar{x}_{1} - \bar{x}_{2}) + E (\text{Indep.}) \\ \text{where } E = t_{\alpha/2} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} (\text{df = smaller of } \\ (\sigma_{1} \text{ and } \sigma_{2} \text{ unknown and not assumed equal}) \\ E = t_{\alpha/2} \sqrt{\frac{s_{p}^{2}}{n_{1}} + \frac{s_{p}^{2}}{n_{2}}} (\text{df = } n_{1} + n_{2} - 2) \\ s_{p}^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{(n_{1} - 1) + (n_{2} - 1)} \\ (\sigma_{1} \text{ and } \sigma_{2} \text{ unknown but assumed equal}) \\ E = z_{\alpha/2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}} \\ (\sigma_{1}, \sigma_{2} \text{ known}) \\ \hline \\ \hline \\ \overline{d} - E < \mu_{d} < \overline{d} + E (\text{Matched pairs}) \\ \text{where } E = t_{\alpha/2} \frac{s_{d}}{\sqrt{n}} (\text{df = } n - 1) \end{aligned}$	Correlation $r = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{n(\Sigma x^2) - (\Sigma x)^2}\sqrt{n(\Sigma y^2) - (\Sigma y)^2}}$ or $r = \frac{\Sigma(z_x z_y)}{n-1}$ where $z_x = z$ score for x $z_y = z$ score for y Slope: $b_1 = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2}$ or $b_1 = r\frac{s_y}{s_x}$ y-Intercept: $b_0 = \overline{y} - b_1 \overline{x}$ or $b_0 = \frac{(\Sigma y)(\Sigma x^2) - (\Sigma x)(\Sigma xy)}{n(\Sigma x^2) - (\Sigma x)^2}$ $\hat{y} = b_0 + b_1 x$ Estimated eq. of regression line $r^2 = \frac{\text{explained variation}}{\text{total variation}}$ $s_e = \sqrt{\frac{\Sigma(y - \hat{y})^2}{n-2}}$ or $\sqrt{\frac{\Sigma y^2 - b_0 \Sigma y - b_1 \Sigma xy}{n-2}}$ $\hat{y} - E < y < \hat{y} + E$ Prediction interval where $E = t_{\alpha/2} s_e \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \overline{x})^2}{n(\Sigma x^2) - (\Sigma x)^2}}$
	Ch. 11: Goodness-of-Fit and Contingency Tables
$z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p}{q}} + \frac{p}{n_2}} \text{Two proportions} \\ \sqrt{\frac{p}{q}} + \frac{p}{n_2} \overline{p} = \frac{x_1 + x_2}{n_1 + n_2} \\ t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \text{df = smaller of} \\ n_1 - 1, n_2 - 1 \\ \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ \text{Two means—independent; } \sigma_1 \text{ and } \sigma_2 \text{ unknown, and not} \\ \text{assumed equal.} \\ t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} (\text{df = } n_1 + n_2 - 2) \\ \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \\ \text{Two means—independent; } \sigma_1 \text{ and } \sigma_2 \text{ unknown, but} \\ \text{assumed equal.} \\ z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \text{Two means—independent;} \\ \sigma_1, \sigma_2 \text{ known.} \\ \end{cases}$	$\chi^{2} = \sum \frac{(O - E)^{2}}{E} \text{Goodness-of-fit } (\text{df} = k - 1)$ $\chi^{2} = \sum \frac{(O - E)^{2}}{E} \text{Contingency table } [\text{df} = (r - 1)(c - 1)]$ where $E = \frac{(\text{row total})(\text{column total})}{(\text{grand total})}$ $\chi^{2} = \frac{(b - c - 1)^{2}}{b + c} \text{McNemar's test for matched pairs } (\text{df} = 1)$ Ch. 12: One-Way Analysis of Variance Procedure for testing H_{0} : $\mu_{1} = \mu_{2} = \mu_{3} = \dots$ 1. Use software or calculator to obtain results. 2. Identify the <i>P</i> -value. 3. Form conclusion: If <i>P</i> -value $\leq \alpha$, reject the null hypothesis of equal means. If <i>P</i> -value $> \alpha$, fail to reject the null hypothesis of equal means.
$t = \frac{d - \mu_d}{\frac{s_d}{\sqrt{n}}}$ Two means—matched pairs (df = n - 1) $F = \frac{s_1^2}{s_2^2}$ Standard deviation or variance— two populations (where $s_1^2 \ge s_2^2$)	 Procedure: Use software or a calculator to obtain results. Test H₀: There is no interaction between the row factor and column factor. Stop if H₀ from Step 2 is rejected. If H₀ from Step 2 is not rejected (so there does not appear to be an interaction effect), proceed with these two tests:
	Test for effects from the row factor. Test for effects from the column factor.

Formulas and Tables by Mario F. Triola Copyright 2018 Pearson Education, Inc.

	Ch.	13:	Non	param	etric	Tests
--	-----	-----	-----	-------	-------	-------

$z = \frac{(x+0.5) - (n/2)}{\frac{\sqrt{n}}{2}}$ Sign test for $n > 25$
$z = \frac{T - n(n+1)/4}{\sqrt{\frac{n(n+1)(2n+1)}{24}}}$ Wilcoxon signed ranks (matched pairs and $n > 30$)
$z = \frac{R - \mu_R}{\sigma_R} = \frac{R - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}}}$ Wilcoxon rank-sum (two independent samples)
$H = \frac{12}{N(N+1)} \left(\frac{R_1^2}{n_1} + \frac{R_2^2}{n_2} + \dots + \frac{R_k^2}{n_k} \right) - 3(N+1)$ Kruskal-Wallis (chi-square df = $k - 1$)
$r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$ Rank correlation
$\left(\text{critical values for } n > 30: \frac{-5}{\sqrt{n-1}}\right)$
$z = \frac{G - \mu_G}{\sigma_G} = \frac{G - \left(\frac{2n_1n_2}{n_1 + n_2} + 1\right)}{\sqrt{\frac{(2n_1n_2)(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}}} \text{Runs test} \text{ for } n > 20$

Ch. 14: Control Charts

R chart: Plot sample ranges

UCL: $D_4\overline{R}$

Centerline: \overline{R}

LCL: $D_3\overline{R}$

 \overline{x} chart: Plot sample means

UCL: $\overline{\overline{x}} + A_2 \overline{R}$

Centerline:
$$\overline{x}$$

LCL: $\overline{\overline{x}} - A_2 \overline{R}$

p chart: Plot sample proportions

UCL:
$$\overline{p} + 3\sqrt{\frac{\overline{p} \, \overline{q}}{n}}$$

Centerline: \overline{p}

LCL:
$$\overline{p} - 3\sqrt{\frac{p q}{n}}$$

TABLE A-	6 Critical Values Correlation Co	of the Pearson efficient <i>r</i>
п	$\alpha = .05$	<i>α</i> = .01
4	.950	.990
5	.878	.959
6	.811	.917
7	.754	.875
8	.707	.834
9	.666	.798
10	.632	.765
11	.602	.735
12	.576	.708
13	.553	.684
14	.532	.661
15	.514	.641
16	.497	.623
17	.482	.606
18	.468	.590
19	.456	.575
20	.444	.561
25	.396	.505
30	.361	.463
35	.335	.430
40	.312	.402
45	.294	.378
50	.279	.361
60	.254	.330
70	.236	.305
80	.220	.286
90	.207	.269
100	.196	.256

NOTE: To test $H_0: \rho = 0$ (no correlation) against $H_1: \rho \neq 0$ (correlation), reject H_0 if the absolute value of *r* is greater than or equal to the critical value in the table.

Subgroup Size			
п	D_3	D_4	A ₂
2	0.000	3.267	1.880
3	0.000	2.574	1.023
4	0.000	2.282	0.729
5	0.000	2.114	0.577
6	0.000	2.004	0.483
7	0.076 1.924		0.419

Inferences about μ : choosing between <i>t</i> and normal distributions		
<i>t</i> distribution:	or	σ not known and normally distributed population σ not known and $n > 30$
Normal distribution:	or	σ known and normally distributed population σ known and $n > 30$
Nonparametric method	or bootst	rapping: Population not normally distributed and $n \leq 30$

Procedure for Hypothesis Tests

